高三物理的知識(shí)點(diǎn)
來到高三,必須重視學(xué)習(xí),這是決定你人生的去處,好與壞。不要失望,不要?dú)怵H,相信自己,努力學(xué)習(xí),你終將會(huì)成功!下面是小編整理的高三物理知識(shí)點(diǎn),希望對(duì)你有所幫助!
高三物理知識(shí)點(diǎn)1
1、目的:驗(yàn)證平行四邊形法則。
2、器材:方木板一個(gè)、白紙一張、彈簧秤兩個(gè)、橡皮條一根、細(xì)繩套兩個(gè)、三角板、刻度尺,圖釘幾個(gè)。
3、主要測(cè)量:
a、用兩個(gè)測(cè)力計(jì)拉細(xì)繩套使橡皮條伸長(zhǎng),繩的結(jié)點(diǎn)到達(dá)某點(diǎn)O。
結(jié)點(diǎn)O的位置。
記錄兩測(cè)力計(jì)的示數(shù)F1、F2。
兩測(cè)力計(jì)所示拉力的方向。
b、用一個(gè)測(cè)力計(jì)重新將結(jié)點(diǎn)拉到O點(diǎn)。
記錄彈簧秤的拉力大小F及方向。
4、作圖:刻度尺、三角板
5、減小誤差的方法:
a、測(cè)力計(jì)使用前要校準(zhǔn)零點(diǎn)。
b、方木板應(yīng)水平放置。
c、彈簧伸長(zhǎng)方向和所測(cè)拉力方向應(yīng)一致,并與木板平行。
d、兩個(gè)分力和合力都應(yīng)盡可能大些。
e、拉橡皮條的細(xì)線要長(zhǎng)些,標(biāo)記兩條細(xì)線方向的兩點(diǎn)要盡可能遠(yuǎn)些。
f、兩個(gè)分力間的夾角不宜過大或過小,一般取600---1200為宜
高三物理知識(shí)點(diǎn)2
1.電流
(1)定義:電荷的定向移動(dòng)形成電流。
(2)電流的方向:規(guī)定正電荷定向移動(dòng)的方向?yàn)殡娏鞯姆较颉?/p>
在外電路中電流由高電勢(shì)點(diǎn)流向低電勢(shì)點(diǎn),在電源的內(nèi)部電流由低電勢(shì)點(diǎn)流向高電勢(shì)點(diǎn)(由負(fù)極流向正極)。
2.電流強(qiáng)度:
(1)定義:通過導(dǎo)體橫截面的電量跟通過這些電量所用時(shí)間的比值,I=q/t
(2)在國(guó)際單位制中電流的單位是安。1mA=10-3A,1μA=10-6A
(3)電流強(qiáng)度的定義式中,如果是正、負(fù)離子同時(shí)定向移動(dòng),q應(yīng)為正負(fù)離子的電荷量和。
3.電阻
(1)定義:導(dǎo)體兩端的電壓與通過導(dǎo)體中的電流的比值叫導(dǎo)體的電阻。(2)定義式:R=U/I,單位:Ω
(3)電阻是導(dǎo)體本身的屬性,跟導(dǎo)體兩端的電壓及通過電流無關(guān)。
4★★.電阻定律
(1)內(nèi)容:在溫度不變時(shí),導(dǎo)體的電阻R與它的長(zhǎng)度L成正比,與它的橫截面積S成反比。
(2)公式:R=ρL/S。(3)適用條件:①粗細(xì)均勻的導(dǎo)線;②濃度均勻的電解液。
5.電阻率:
反映了材料對(duì)電流的阻礙作用。
(1)有些材料的電阻率隨溫度升高而增大(如金屬);有些材料的電阻率隨溫度升高而減小(如半導(dǎo)體和絕緣體);有些材料的電阻率幾乎不受溫度影響(如錳銅和康銅)。
(2)半導(dǎo)體:導(dǎo)電性能介于導(dǎo)體和絕緣體之間,而且電阻隨溫度的增加而減小,這種材料稱為半導(dǎo)體,半導(dǎo)體有熱敏特性,光敏特性,摻入微量雜質(zhì)特性。
(3)超導(dǎo)現(xiàn)象:當(dāng)溫度降低到絕對(duì)零度附近時(shí),某些材料的電阻率突然減小到零,這種現(xiàn)象叫超導(dǎo)現(xiàn)象,處于這種狀態(tài)的物體叫超導(dǎo)體。
6.電功和電熱
(1)電功和電功率:
電流做功的實(shí)質(zhì)是電場(chǎng)力對(duì)電荷做功。電場(chǎng)力對(duì)電荷做功,電荷的電勢(shì)能減少,電勢(shì)能轉(zhuǎn)化為其他形式的能。因此電功W=qU=UIt,這是計(jì)算電功普遍適用的公式。
單位時(shí)間內(nèi)電流做的功叫電功率,P=W/t=UI,這是計(jì)算電功率普遍適用的公式。
(2)★焦耳定律:Q=I2Rt,式中Q表示電流通過導(dǎo)體產(chǎn)生的熱量,單位是J。焦耳定律無論是對(duì)純電阻電路還是對(duì)非純電阻電路都是適用的。
(3)電功和電熱的關(guān)系
①純電阻電路消耗的電能全部轉(zhuǎn)化為熱能,電功和電熱是相等的。所以有W=Q,UIt=I2Rt,U=IR(歐姆定律成立),
②非純電阻電路消耗的電能一部分轉(zhuǎn)化為熱能,另一部分轉(zhuǎn)化為其他形式的能。所以有W>Q,UIt>I2Rt,U>IR(歐姆定律不成立)。
高三物理知識(shí)點(diǎn)3
1621年,荷蘭數(shù)學(xué)家斯涅耳找到了入射角與折射角之間的規(guī)律——折射定律。
1801年,英國(guó)物理學(xué)家托馬斯·楊成功地觀察到了光的干涉現(xiàn)象。
1818年,法國(guó)科學(xué)家菲涅爾和泊松計(jì)算并實(shí)驗(yàn)觀察到光的圓板衍射—泊松亮斑。
1864年,英國(guó)物理學(xué)家麥克斯韋預(yù)言了電磁波的存在,指出光是一種電磁波;1887年,赫茲證實(shí)了電磁波的存在,光是一種電磁波
1905年,愛因斯坦提出了狹義相對(duì)論,有兩條基本原理:①相對(duì)性原理——不同的慣性參考系中,一切物理規(guī)律都是相同的;②光速不變?cè)怼煌膽T性參考系中,光在真空中的速度一定是c不變。
愛因斯坦還提出了相對(duì)論中的一個(gè)重要結(jié)論——質(zhì)能方程式。
公元前468-前376,我國(guó)的墨翟及其弟子在《墨經(jīng)》中記載了光的直線傳播、影的形成、光的反射、平面鏡和球面鏡成像等現(xiàn)象,為世界上最早的光學(xué)著作。
1849年法國(guó)物理學(xué)家斐索首先在地面上測(cè)出了光速,以后又有許多科學(xué)家采用了更精密的方法測(cè)定光速,如美國(guó)物理學(xué)家邁克爾遜的旋轉(zhuǎn)棱鏡法。(注意其測(cè)量方法)
關(guān)于光的本質(zhì):17世紀(jì)明確地形成了兩種學(xué)說:一種是牛頓主張的微粒說,認(rèn)為光是光源發(fā)出的一種物質(zhì)微粒;另一種是荷蘭物理學(xué)家惠更斯提出的波動(dòng)說,認(rèn)為光是在空間傳播的某種波。這兩種學(xué)說都不能解釋當(dāng)時(shí)觀察到的全部光現(xiàn)象。
物理學(xué)晴朗天空上的兩朵烏云:①邁克遜-莫雷實(shí)驗(yàn)——相對(duì)論(高速運(yùn)動(dòng)世界),②熱輻射實(shí)驗(yàn)——量子論(微觀世界);
19世紀(jì)和20世紀(jì)之交,物理學(xué)的三大發(fā)現(xiàn):X射線的發(fā)現(xiàn),電子的發(fā)現(xiàn),放射性的發(fā)現(xiàn)。
1905年,愛因斯坦提出了狹義相對(duì)論,有兩條基本原理:①相對(duì)性原理——不同的慣性參考系中,一切物理規(guī)律都是相同的;②光速不變?cè)怼煌膽T性參考系中,光在真空中的速度一定是c不變。
1900年,德國(guó)物理學(xué)家普朗克解釋物體熱輻射規(guī)律提出能量子假說:物質(zhì)發(fā)射或吸收能量時(shí),能量不是連續(xù)的,而是一份一份的,每一份就是一個(gè)最小的能量單位,即能量子;
激光——被譽(yù)為20世紀(jì)的“世紀(jì)之光”;
1900年,德國(guó)物理學(xué)家普朗克為解釋物體熱輻射規(guī)律提出:電磁波的發(fā)射和吸收不是連續(xù)的,而是一份一份的,把物理學(xué)帶進(jìn)了量子世界;受其啟發(fā)1905年愛因斯坦提出光子說,成功地解釋了光電效應(yīng)規(guī)律,因此獲得諾貝爾物理獎(jiǎng)。
1922年,美國(guó)物理學(xué)家康普頓在研究石墨中的電子對(duì)X射線的散射時(shí)——康普頓效應(yīng),證實(shí)了光的粒子性。(說明動(dòng)量守恒定律和能量守恒定律同時(shí)適用于微觀粒子)
1913年,丹麥物理學(xué)家玻爾提出了自己的原子結(jié)構(gòu)假說,成功地解釋和預(yù)言了氫原子的輻射電磁波譜,為量子力學(xué)的發(fā)展奠定了基礎(chǔ)。
1924年,法國(guó)物理學(xué)家德布羅意大膽預(yù)言了實(shí)物粒子在一定條件下會(huì)表現(xiàn)出波動(dòng)性;
1927年美、英兩國(guó)物理學(xué)家得到了電子束在金屬晶體上的衍射圖案。電子顯微鏡與光學(xué)顯微鏡相比,衍射現(xiàn)象影響小很多,大大地提高分辨能力,質(zhì)子顯微鏡的分辨本能更高。