關(guān)于高一數(shù)學(xué)的必考知識(shí)點(diǎn)
學(xué)習(xí)中的苦確實(shí)難以盡言,然而,學(xué)習(xí)亦有樂(lè)。當(dāng)你經(jīng)過(guò)艱難的思索推理,最后解出一道難題時(shí),會(huì)喜形于色;當(dāng)你在學(xué)習(xí)中取得優(yōu)良成績(jī)時(shí),會(huì)感到由衷的喜悅。下面是小編給大家?guī)?lái)的高一數(shù)學(xué)知識(shí)點(diǎn),希望能幫助到大家!
關(guān)于高一數(shù)學(xué)的必考知識(shí)點(diǎn)匯總
1、含n個(gè)元素的有限集合其子集共有2n個(gè),非空子集有2n—1個(gè),非空真子集有2n—2個(gè)。
2、集合中,Cu(A∩B)=(CuA)U(CuB),交之補(bǔ)等于補(bǔ)之并。Cu(AUB)=(CuA)∩(CuB),并之補(bǔ)等于補(bǔ)之交。
3、ax2+bx+c<0的解集為x(0
+c>0的解集為x,cx2+bx+a>0的解集為>x或x<;ax2—bx+
4、c<0的解集為x,cx2—bx+a>0的解集為->x或x<-。
5、原命題與其逆否命題是等價(jià)命題。原命題的逆命題與原命題的否命題也是等價(jià)命題。
6、函數(shù)是一種特殊的映射,函數(shù)與映射都可用:f:A→B表示。A表示原像,B表示像。當(dāng)f:A→B表示函數(shù)時(shí),A表示定義域,B大于或等于其值域范圍。只有一一映射的函數(shù)才具有反函數(shù)。
7、原函數(shù)與反函數(shù)的單調(diào)性一致,且都為奇函數(shù)。偶函數(shù)和周期函數(shù)沒(méi)有反函數(shù)。若f(x)與g(x)關(guān)于點(diǎn)(a,b)對(duì)稱(chēng),則g(x)=2b-f(2a-x).
8、若f(-x)=f(x),則f(x)為偶函數(shù),若f(-x)=f(x),則f(x)為奇函數(shù);偶函數(shù)關(guān)于y軸對(duì)稱(chēng),且對(duì)稱(chēng)軸兩邊的單調(diào)性相反;奇函數(shù)關(guān)于原點(diǎn)對(duì)稱(chēng),且在整個(gè)定義域上的單調(diào)性一致。反之亦然。若奇函數(shù)在x=0處有意義,則f(0)=0。函數(shù)的單調(diào)性可用定義法和導(dǎo)數(shù)法求出。偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù),奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù)。對(duì)于任意常數(shù)T(T≠0),在定義域范圍內(nèi),都有f(x+T)=f(x),則稱(chēng)f(x)是周期為T(mén)的周期函數(shù),且f(x+kT)=f(x),k≠0.
9、周期函數(shù)的特征性:①f(x+a)=-f(x),是T=2a的函數(shù),②若f(x+a)+f(x+b)=0,即f(x+a)=-f(x+b),T=2(b-a)的函數(shù),③若f(x)既x=a關(guān)對(duì)稱(chēng),又關(guān)于x=b對(duì)稱(chēng),則f(x)是T=2(b-a)的函數(shù)④若f(x
+a)?f(x+b)=±1,即f(x+a)=±,則f(x)是T=2(b-a)的函數(shù)⑤f(x+a)=±,則f(x)
是T=4(b-a)的函數(shù)
10、復(fù)合函數(shù)的單調(diào)性滿足“同增異減”原理。定義域都是指函數(shù)中自變量的取值范圍。
11、抽象函數(shù)主要有f(xy)=f(x)+f(y)(對(duì)數(shù)型),f(x+y)=f(x)?f(y)(指數(shù)型),f(x+y)=f(x)+f(y)(直線型)。解此類(lèi)抽象函數(shù)比較實(shí)用的方法是特殊值法和周期法。
12、指數(shù)函數(shù)圖像的規(guī)律是:底數(shù)按逆時(shí)針增大。對(duì)數(shù)函數(shù)與之相反.
13、ar?as=ar+s,ar÷as=ar—s,(ar)s=ars,(ab)r=arbr。在解可化為a2x+Bax+C=0或a2x+Bax+C≥0(≤0)的指數(shù)方程或不等式時(shí),常借助于換元法,應(yīng)特別注意換元后新變?cè)娜≈捣秶?/p>
14、log10N=lgN;logeN=lnN(e=2.718???);對(duì)數(shù)的性質(zhì):如果a>0,a≠0,M>0N>0,
那么loga(MN)=logaM+logaN,;loga()=logaM—logaN;logaMn=nlogaM;alogaN=N.
換底公式:logaN=;logamlogbnlogck=logbmlogcnlogak=logcmloganlogbk.
15、函數(shù)圖像的變換:
(1)水平平移:y=f(x±a)(a>0)的圖像可由y=f(x)向左或向右平移a個(gè)單位得到;
(2)豎直平移:y=f(x)±b(b>0)圖像,可由y=f(x)向上或向下平移b個(gè)單位得到;
(3)對(duì)稱(chēng):若對(duì)于定義域內(nèi)的一切x均有f(x+m)=f(x—m),則y=f(x)的圖像關(guān)于直線x=m對(duì)稱(chēng);y=f(x)關(guān)于(a,b)對(duì)稱(chēng)的函數(shù)為y!=2b—f(2a—x).
(4) ,學(xué)習(xí)計(jì)劃;翻折:①y=|f(x)|是將y=f(x)位于x軸下方的部分以x軸為對(duì)稱(chēng)軸將期翻折到x軸上方的圖像。②y=f(|x|)是將y=f(x)位于y軸左方的圖像翻折到y(tǒng)軸的右方而成的圖像。
(5)有關(guān)結(jié)論:①若f(a+x)=f(b—x),在x為一切實(shí)數(shù)上成立,則y=f(x)的圖像關(guān)于
x=對(duì)稱(chēng)。②函數(shù)y=f(a+x)與函數(shù)y=f(b—x)的圖像有關(guān)于直線x=對(duì)稱(chēng)。
15、等差數(shù)列中,an=a1+(n—1)d=am+(n—m)d;sn=n=na1+
16、若n+m=p+q,則am+an=ap+aq;sk,s2k—k,s3k—2k成以k2d為公差的等差數(shù)列。an是等差數(shù)列,若ap=q,aq=p,則ap+q=0;若sp=q,sq=p,則sp+q=—(p+q);若已知sk,sn,sn—k,sn=(sk+sn+sn—k)/2k;若an是等差數(shù)列,則可設(shè)前n項(xiàng)和為sn=an2+bn(注:沒(méi)有常數(shù)項(xiàng)),用方程的思想求解a,b。在等差數(shù)列中,若將其腳碼成等差數(shù)列的項(xiàng)取出組成數(shù)列,則新的數(shù)列仍舊是等差數(shù)列。
17、等比數(shù)列中,an=a1?qn-1=am?qn-m,若n+m=p+q,則am?an=ap?aq;sn=na1(q=1),
sn=,(q≠1);若q≠1,則有=q,若q≠—1,=q;
sk,s2k—k,s3k—2k也是等比數(shù)列。a1+a2+a3,a2+a3+a4,a3+a4+a5也成等比數(shù)列。在等比數(shù)列中,若將其腳碼成等差數(shù)列的項(xiàng)取出組成數(shù)列,則新的數(shù)列仍舊是等比數(shù)列。裂項(xiàng)公式:
=—,=?(—),常用數(shù)列遞推形式:疊加,疊乘,
18、弧長(zhǎng)公式:l=|α|?r。s扇=?lr=?|α|r2=?;當(dāng)一個(gè)扇形的周長(zhǎng)一定時(shí)(為L(zhǎng)時(shí)),
其面積為,其圓心角為2弧度。
19、Sina(α+β)=sinαcosβ+cosαsinβ;Sina(α—β)=sinαcosβ—cosαsinβ;
Cos(α+β)=cosαcosβ—sinαsinβ;cos(α—β)=cosαcosβ+sinαsinβ
關(guān)于高一數(shù)學(xué)的必考知識(shí)點(diǎn)總結(jié)
復(fù)數(shù)是高中代數(shù)的重要內(nèi)容,在高考試題中約占8%-10%,一般的出一道基礎(chǔ)題和一道中檔題,經(jīng)常與三角、解析幾何、方程、不等式等知識(shí)綜合.本章主要內(nèi)容是復(fù)數(shù)的概念,復(fù)數(shù)的代數(shù)、幾何、三角表示方法以及復(fù)數(shù)的運(yùn)算.方程、方程組,數(shù)形結(jié)合,分域討論,等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想與方法在本章中有突出的體現(xiàn).而復(fù)數(shù)是代數(shù),三角,解析幾何知識(shí),相互轉(zhuǎn)化的樞紐,這對(duì)拓寬學(xué)生思路,提高學(xué)生解綜合習(xí)題能力是有益的.數(shù)、式的運(yùn)算和解方程,方程組,不等式是學(xué)好本章必須具有的基本技能.簡(jiǎn)化運(yùn)算的意識(shí)也應(yīng)進(jìn)一步加強(qiáng).
在本章學(xué)習(xí)結(jié)束時(shí),應(yīng)該明確對(duì)二次三項(xiàng)式的因式分解和解一元二次方程與二項(xiàng)方程可以畫(huà)上圓滿的句號(hào)了,對(duì)向量的運(yùn)算、曲線的復(fù)數(shù)形式的方程、復(fù)數(shù)集中的數(shù)列等邊緣性的知識(shí)還有待于進(jìn)一步的研究.
1.知識(shí)網(wǎng)絡(luò)圖
復(fù)數(shù)知識(shí)點(diǎn)網(wǎng)絡(luò)圖
2.復(fù)數(shù)中的難點(diǎn)
(1)復(fù)數(shù)的向量表示法的運(yùn)算.對(duì)于復(fù)數(shù)的向量表示有些學(xué)生掌握得不好,對(duì)向量的運(yùn)算的幾何意義的靈活掌握有一定的困難.對(duì)此應(yīng)認(rèn)真體會(huì)復(fù)數(shù)向量運(yùn)算的幾何意義,對(duì)其靈活地加以證明.
(2)復(fù)數(shù)三角形式的乘方和開(kāi)方.有部分學(xué)生對(duì)運(yùn)算法則知道,但對(duì)其靈活地運(yùn)用有一定的困難,特別是開(kāi)方運(yùn)算,應(yīng)對(duì)此認(rèn)真地加以訓(xùn)練.
(3)復(fù)數(shù)的輻角主值的求法.
(4)利用復(fù)數(shù)的幾何意義靈活地解決問(wèn)題.復(fù)數(shù)可以用向量表示,同時(shí)復(fù)數(shù)的模和輻角都具有幾何意義,對(duì)他們的理解和應(yīng)用有一定難度,應(yīng)認(rèn)真加以體會(huì).
3.復(fù)數(shù)中的重點(diǎn)
(1)理解好復(fù)數(shù)的概念,弄清實(shí)數(shù)、虛數(shù)、純虛數(shù)的不同點(diǎn).
(2)熟練掌握復(fù)數(shù)三種表示法,以及它們間的互化,并能準(zhǔn)確地求出復(fù)數(shù)的模和輻角.復(fù)數(shù)有代數(shù),向量和三角三種表示法.特別是代數(shù)形式和三角形式的互化,以及求復(fù)數(shù)的模和輻角在解決具體問(wèn)題時(shí)經(jīng)常用到,是一個(gè)重點(diǎn)內(nèi)容.
(3)復(fù)數(shù)的三種表示法的各種運(yùn)算,在運(yùn)算中重視共軛復(fù)數(shù)以及模的有關(guān)性質(zhì).復(fù)數(shù)的運(yùn)算是復(fù)數(shù)中的主要內(nèi)容,掌握復(fù)數(shù)各種形式的運(yùn)算,特別是復(fù)數(shù)運(yùn)算的幾何意義更是重點(diǎn)內(nèi)容.
(4)復(fù)數(shù)集中一元二次方程和二項(xiàng)方程的解法.
關(guān)于高一數(shù)學(xué)的必考知識(shí)點(diǎn)匯總
一次函數(shù)
一、定義與定義式:
自變量x和因變量y有如下關(guān)系:
y=kx+b
則此時(shí)稱(chēng)y是x的一次函數(shù)。
特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。
即:y=kx(k為常數(shù),k≠0)
二、一次函數(shù)的性質(zhì):
1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k
即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))
2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì):
1.作法與圖形:通過(guò)如下3個(gè)步驟
(1)列表;
(2)描點(diǎn);
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))
2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過(guò)原點(diǎn)。
3.k,b與函數(shù)圖像所在象限:
當(dāng)k>0時(shí),直線必通過(guò)一、三象限,y隨x的增大而增大;
當(dāng)k<0時(shí),直線必通過(guò)二、四象限,y隨x的增大而減小。
當(dāng)b>0時(shí),直線必通過(guò)一、二象限;
當(dāng)b=0時(shí),直線通過(guò)原點(diǎn)
當(dāng)b<0時(shí),直線必通過(guò)三、四象限。
特別地,當(dāng)b=O時(shí),直線通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。
這時(shí),當(dāng)k>0時(shí),直線只通過(guò)一、三象限;當(dāng)k<0時(shí),直線只通過(guò)二、四象限
四、確定一次函數(shù)的表達(dá)式:
已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過(guò)點(diǎn)A、B的一次函數(shù)的表達(dá)式。
(1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。
(2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……②
(3)解這個(gè)二元一次方程,得到k,b的值。
(4)最后得到一次函數(shù)的表達(dá)式。
五、一次函數(shù)在生活中的應(yīng)用:
1.當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt。
2.當(dāng)水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。
六、常用公式:
1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)
2.求與x軸平行線段的中點(diǎn):|x1-x2|/2
3.求與y軸平行線段的中點(diǎn):|y1-y2|/2
4.求任意線段的長(zhǎng):√(x1-x2)^2+(y1-y2)^2(注:根號(hào)下(x1-x2)與(y1-y2)的平方和)
關(guān)于高一數(shù)學(xué)的必考知識(shí)點(diǎn)相關(guān)文章:
★ 高一數(shù)學(xué)期末必考的知識(shí)點(diǎn)歸納
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(考前必看)
★ 高一數(shù)學(xué)期末必考的知識(shí)點(diǎn)歸納
★ 高一數(shù)學(xué)常考知識(shí)點(diǎn)總結(jié)
★ 高一數(shù)學(xué)知識(shí)點(diǎn)匯總大全
★ 高一數(shù)學(xué)必修一函數(shù)必背知識(shí)點(diǎn)整理
★ 高一數(shù)學(xué)期末考試知識(shí)點(diǎn)總結(jié)
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)期末必備