六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) >

高中高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間: 贊銳20 分享

學(xué)習(xí)數(shù)學(xué)記得東西很多,如果單純的記憶每個(gè)公式,不但增加記憶量而且容易忘。下面是小編為大家整理的高中高一數(shù)學(xué)知識(shí)點(diǎn),歡迎閱讀,希望能幫助到大家!

高中高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高中高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

集合常用大寫(xiě)拉丁字母來(lái)表示,如:A,B,C…而對(duì)于集合中的元素則用小寫(xiě)的拉丁字母來(lái)表示,如:a,b,c…拉丁字母只是相當(dāng)于集合的名字,沒(méi)有任何實(shí)際的意義。

將拉丁字母賦給集合的方法是用一個(gè)等式來(lái)表示的,例如:A={…}的形式。等號(hào)左邊是大寫(xiě)的拉丁字母,右邊花括號(hào)括起來(lái)的,括號(hào)內(nèi)部是具有某種共同性質(zhì)的數(shù)學(xué)元素。

常用的有列舉法和描述法。

1.列舉法﹕常用于表示有限集合,把集合中的所有元素一一列舉出來(lái)﹐寫(xiě)在大括號(hào)內(nèi)﹐這種表示集合的方法叫做列舉法。{1,2,3,……}

2.描述法﹕常用于表示無(wú)限集合,把集合中元素的公共屬性用文字﹐符號(hào)或式子等描述出來(lái)﹐寫(xiě)在大括號(hào)內(nèi)﹐這種表示集合的方法叫做描述法。{x|P}(x為該集合的元素的一般形式,P為這個(gè)集合的元素的共同屬性)如:小于π的正實(shí)數(shù)組成的集合表示為:{x|0

3.圖示法(venn圖)﹕為了形象表示集合,我們常常畫(huà)一條封閉的曲線(或者說(shuō)圓圈),用它的內(nèi)部表示一個(gè)集合。集合

自然語(yǔ)言常用數(shù)集的符號(hào):

(1)全體非負(fù)整數(shù)的集合通常簡(jiǎn)稱非負(fù)整數(shù)集(或自然數(shù)集),記作N;不包括0的自然數(shù)集合,記作N_

(2)非負(fù)整數(shù)集內(nèi)排除0的集,也稱正整數(shù)集,記作Z+;負(fù)整數(shù)集內(nèi)也排除0的集,稱負(fù)整數(shù)集,記作Z-

(3)全體整數(shù)的集合通常稱作整數(shù)集,記作Z

(4)全體有理數(shù)的集合通常簡(jiǎn)稱有理數(shù)集,記作Q。Q={p/q|p∈Z,q∈N,且p,q互質(zhì)}(正負(fù)有理數(shù)集合分別記作Q+Q-)

(5)全體實(shí)數(shù)的集合通常簡(jiǎn)稱實(shí)數(shù)集,記作R(正實(shí)數(shù)集合記作R+;負(fù)實(shí)數(shù)記作R-)

(6)復(fù)數(shù)集合計(jì)作C集合的運(yùn)算:集合交換律A∩B=B∩AA∪B=B∪A集合結(jié)合律(A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)集合分配律A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)集合德.摩根律集合

Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB集合“容斥原理”在研究集合時(shí),會(huì)遇到有關(guān)集合中的元素個(gè)數(shù)問(wèn)題,我們把有限集合A的元素個(gè)數(shù)記為card(A)。

集合吸收律A∪(A∩B)=AA∩(A∪B)=A集合求補(bǔ)律A∪CuA=UA∩CuA=Φ設(shè)A為集合,把A的全部子集構(gòu)成的集合叫做A的冪集德摩根律A-(BUC)=(A-B)∩(A-C)A-(B∩C)=(A-B)U(A-C)~(BUC)=~B∩~C~(B∩C)=~BU~C~Φ=E~E=Φ特殊集合的表示復(fù)數(shù)集C實(shí)數(shù)集R正實(shí)數(shù)集R+負(fù)實(shí)數(shù)集R-整數(shù)集Z正整數(shù)集Z+負(fù)整數(shù)集Z-有理數(shù)集Q正有理數(shù)集Q+負(fù)有理數(shù)集Q-不含0的有理數(shù)集Q_

高中高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

直線和平面的位置關(guān)系:

直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

①直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn)

②直線和平面相交——有且只有一個(gè)公共點(diǎn)

直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。

esp.空間向量法(找平面的法向量)

規(guī)定:

a、直線與平面垂直時(shí),所成的角為直角,

b、直線與平面平行或在平面內(nèi),所成的角為0°角

由此得直線和平面所成角的取值范圍為[0°,90°]

最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角

三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直

esp.直線和平面垂直

直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說(shuō)直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。

直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。

③直線和平面平行——沒(méi)有公共點(diǎn)

直線和平面平行的定義:如果一條直線和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線和這個(gè)平面平行。

直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。

直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。

高中高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

如果直線a與平面α平行,那么直線a與平面α內(nèi)的直線有哪些位置關(guān)系?

平行或異面。

若直線a與平面α平行,那么在平面α內(nèi)與直線a平行的直線有多少條?這些直線的位置關(guān)系如何?

無(wú)數(shù)條;平行。

如果直線a與平面α平行,經(jīng)過(guò)直線a的平面β與平面α相交于直線b,那么直線a、b的位置關(guān)系如何?為什么?

平行;因?yàn)閍∥α,所以a與α沒(méi)有公共點(diǎn),則a與b沒(méi)有公共點(diǎn),又a與b在同一平面β內(nèi),所以a與b平行。

綜上分析,在直線a與平面α平行的條件下我們可以得到什么結(jié)論?

如果一條直線與一個(gè)平面平行,則過(guò)這條直線的任一平面與此平面的交線與該直線平行。

高中高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)相關(guān)文章:

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(考前必看)

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

高一數(shù)學(xué)必修一知識(shí)點(diǎn)匯總

高一數(shù)學(xué)知識(shí)點(diǎn)匯總大全

高中數(shù)學(xué)知識(shí)點(diǎn)全總結(jié)最全版

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高中必修一數(shù)學(xué)知識(shí)點(diǎn)歸納

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)期末必備

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【必修一】

高一數(shù)學(xué)知識(shí)點(diǎn)全面總結(jié)

1069748