高一數(shù)學(xué)下冊(cè)的知識(shí)點(diǎn)
高中學(xué)習(xí)和初中學(xué)習(xí)有著本質(zhì)的區(qū)別,高中的學(xué)習(xí)在思維、分析、閱讀、動(dòng)手等能力有了更高的要求,在剛進(jìn)入高一就要對(duì)高中三年的學(xué)習(xí)做一個(gè)規(guī)劃,轉(zhuǎn)變學(xué)習(xí)思路,從以前的被動(dòng)學(xué)習(xí)轉(zhuǎn)換成主動(dòng)學(xué)習(xí),以下是小編給大家整理的高一數(shù)學(xué)下冊(cè)的知識(shí)點(diǎn),希望大家能夠喜歡!
高一數(shù)學(xué)下冊(cè)的知識(shí)點(diǎn)1
定義:
x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。
范圍:
傾斜角的取值范圍是0°≤α<180°。
理解:
(1)注意“兩個(gè)方向”:直線向上的方向、x軸的正方向;
(2)規(guī)定當(dāng)直線和x軸平行或重合時(shí),它的傾斜角為0度。
意義:
①直線的傾斜角,體現(xiàn)了直線對(duì)x軸正向的傾斜程度;
②在平面直角坐標(biāo)系中,每一條直線都有一個(gè)確定的傾斜角;
③傾斜角相同,未必表示同一條直線。
公式:
k=tanα
k>0時(shí)α∈(0°,90°)
k<0時(shí)α∈(90°,180°)
k=0時(shí)α=0°
當(dāng)α=90°時(shí)k不存在
ax+by+c=0(a≠0)傾斜角為A,
則tanA=-a/b,
A=arctan(-a/b)
當(dāng)a≠0時(shí),
傾斜角為90度,即與X軸垂直
高一數(shù)學(xué)下冊(cè)的知識(shí)點(diǎn)2
對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來(lái)討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:
排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);
排除了為0這種可能,即對(duì)于x<0和x>0的所有實(shí)數(shù),q不能是偶數(shù);
排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。
總結(jié)起來(lái),就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);
如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。
在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。
在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。
而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。
由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(guò)(1,1)這點(diǎn)。
(2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。
(3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。
(4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。
(5)a大于0,函數(shù)過(guò)(0,0);a小于0,函數(shù)不過(guò)(0,0)點(diǎn)。
(6)顯然冪函數(shù)無(wú)界。
高一數(shù)學(xué)下冊(cè)的知識(shí)點(diǎn)3
反比例函數(shù)
形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。
自變量x的取值范圍是不等于0的一切實(shí)數(shù)。
反比例函數(shù)圖像性質(zhì):
反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對(duì)稱。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。
如圖,上面給出了k分別為正和負(fù)(2和-2)時(shí)的函數(shù)圖像。
當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過(guò)一,三象限,是減函數(shù)
當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過(guò)二,四象限,是增函數(shù)
反比例函數(shù)圖像只能無(wú)限趨向于坐標(biāo)軸,無(wú)法和坐標(biāo)軸相交。
知識(shí)點(diǎn):
1.過(guò)反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。
2.對(duì)于雙曲線y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)
高一數(shù)學(xué)下冊(cè)的知識(shí)點(diǎn)相關(guān)文章:
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)下冊(cè)
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(考前必看)
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(人教版)
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納
★ 高一數(shù)學(xué)知識(shí)點(diǎn)小歸納
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)期末必備