高一學(xué)年數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)
高爾基曾經(jīng)說(shuō)過(guò),書(shū)是人類(lèi)進(jìn)步的階梯。一個(gè)人只有不斷學(xué)習(xí),不斷閱讀,日積月累,才能取得進(jìn)步。我們作為學(xué)生,理當(dāng)認(rèn)真學(xué)習(xí),課上認(rèn)真聽(tīng)講,課后及時(shí)鞏固,虛心聽(tīng)取意見(jiàn),不斷吸取教訓(xùn),以下是小編給大家整理的高一學(xué)年數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié),希望大家能夠喜歡!
高一學(xué)年數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)1
對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來(lái)討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:
排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);
排除了為0這種可能,即對(duì)于x<0和x>0的所有實(shí)數(shù),q不能是偶數(shù);
排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。
總結(jié)起來(lái),就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);
如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。
在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。
在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。
而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。
由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(guò)(1,1)這點(diǎn)。
(2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。
(3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。
(4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。
(5)a大于0,函數(shù)過(guò)(0,0);a小于0,函數(shù)不過(guò)(0,0)點(diǎn)。
(6)顯然冪函數(shù)無(wú)界。
高一學(xué)年數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)2
1.并集
(1)并集的定義
由所有屬于集合A或?qū)儆诩螧的元素所組成的集合稱(chēng)為集合A與B的并集,記作A∪B(讀作"A并B");
(2)并集的符號(hào)表示
A∪B={x|x∈A或x∈B}.
并集定義的數(shù)學(xué)表達(dá)式中"或"字的意義應(yīng)引起注意,用它連接的并列成分之間不一定是互相排斥的.
x∈A,或x∈B包括如下三種情況:
①x∈A,但xB;②x∈B,但xA;③x∈A,且x∈B.
由集合A中元素的互異性知,A與B的公共元素在A(yíng)∪B中只出現(xiàn)一次,因此,A∪B是由所有至少屬于A(yíng)、B兩者之一的元素組成的集合.
例如,設(shè)A={3,5,6,8},B={4,5,7,8},則A∪B={3,4,5,6,7,8},而不是{3,5,6,8,4,5,7,8}.
2.交集
利用下圖類(lèi)比并集的概念引出交集的概念.
(1)交集的定義
由屬于集合A且屬于集合B的所有元素組成的集合,稱(chēng)為A與B的交集,記作A∩B(讀作"A交B").
(2)交集的符號(hào)表示
A∩B={x|x∈A且x∈B}.
高一學(xué)年數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)3
圓的方程定義:
圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2中,有三個(gè)參數(shù)a、b、r,即圓心坐標(biāo)為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨(dú)立條件,其中圓心坐標(biāo)是圓的定位條件,半徑是圓的定形條件。
直線(xiàn)和圓的位置關(guān)系:
1.直線(xiàn)和圓位置關(guān)系的判定方法一是方程的觀(guān)點(diǎn),即把圓的方程和直線(xiàn)的方程聯(lián)立成方程組,利用判別式Δ來(lái)討論位置關(guān)系.
①Δ>0,直線(xiàn)和圓相交.②Δ=0,直線(xiàn)和圓相切.③Δ<0,直線(xiàn)和圓相離.
方法二是幾何的觀(guān)點(diǎn),即把圓心到直線(xiàn)的距離d和半徑R的大小加以比較.
①dR,直線(xiàn)和圓相離.
2.直線(xiàn)和圓相切,這類(lèi)問(wèn)題主要是求圓的切線(xiàn)方程.求圓的切線(xiàn)方程主要可分為已知斜率k或已知直線(xiàn)上一點(diǎn)兩種情況,而已知直線(xiàn)上一點(diǎn)又可分為已知圓上一點(diǎn)和圓外一點(diǎn)兩種情況.
3.直線(xiàn)和圓相交,這類(lèi)問(wèn)題主要是求弦長(zhǎng)以及弦的中點(diǎn)問(wèn)題.
切線(xiàn)的性質(zhì)
⑴圓心到切線(xiàn)的距離等于圓的半徑;
⑵過(guò)切點(diǎn)的半徑垂直于切線(xiàn);
⑶經(jīng)過(guò)圓心,與切線(xiàn)垂直的直線(xiàn)必經(jīng)過(guò)切點(diǎn);
⑷經(jīng)過(guò)切點(diǎn),與切線(xiàn)垂直的直線(xiàn)必經(jīng)過(guò)圓心;
當(dāng)一條直線(xiàn)滿(mǎn)足
(1)過(guò)圓心;
(2)過(guò)切點(diǎn);
(3)垂直于切線(xiàn)三個(gè)性質(zhì)中的兩個(gè)時(shí),第三個(gè)性質(zhì)也滿(mǎn)足.
切線(xiàn)的判定定理
經(jīng)過(guò)半徑的外端點(diǎn)并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn).
切線(xiàn)長(zhǎng)定理
從圓外一點(diǎn)作圓的兩條切線(xiàn),兩切線(xiàn)長(zhǎng)相等,圓心與這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角.
訓(xùn),
高一學(xué)年數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)相關(guān)文章:
★ 高一數(shù)學(xué)必修一知識(shí)點(diǎn)匯總
★ 高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
★ 高一數(shù)學(xué)必修1知識(shí)點(diǎn)總結(jié)
★ 高一數(shù)學(xué)必修1知識(shí)點(diǎn)歸納總結(jié)
★ 高一數(shù)學(xué)必修1知識(shí)點(diǎn)歸納
★ 高一數(shù)學(xué)必修一的知識(shí)點(diǎn)總結(jié)介紹
★ 高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)歸納
★ 高一數(shù)學(xué)必修一集合知識(shí)點(diǎn)總結(jié)