高一數(shù)學(xué)月考的重要知識點(diǎn)分析
高中的學(xué)習(xí)是非常緊張的。每個(gè)學(xué)生都要投入自己的幾乎全部的精力。要想能迅速進(jìn)步,就要給自己制定一個(gè)較長遠(yuǎn)的切實(shí)可行的學(xué)習(xí)目標(biāo)和計(jì)劃,詳細(xì)的安排好自己的零星時(shí)間,并及時(shí)作出合理的微量調(diào)整。以下是小編給大家整理的高一數(shù)學(xué)月考的重要知識點(diǎn)分析,希望能幫助到你!
高一數(shù)學(xué)月考的重要知識點(diǎn)分析1
三角函數(shù)誘導(dǎo)公式
【公式一】
設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
【公式二】
設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
【公式三】
任意角α與-α的三角函數(shù)值之間的關(guān)系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
【公式四】
利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
【公式五】
利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
【公式六】
π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
高一數(shù)學(xué)月考的重要知識點(diǎn)分析2
如果直線a與平面α平行,那么直線a與平面α內(nèi)的直線有哪些位置關(guān)系?
平行或異面。
若直線a與平面α平行,那么在平面α內(nèi)與直線a平行的直線有多少條?這些直線的位置關(guān)系如何?
答:無數(shù)條;平行。
如果直線a與平面α平行,經(jīng)過直線a的平面β與平面α相交于直線b,那么直線a、b的位置關(guān)系如何?為什么?
平行;因?yàn)閍∥α,所以a與α沒有公共點(diǎn),則a與b沒有公共點(diǎn),又a與b在同一平面β內(nèi),所以a與b平行。
綜上分析,在直線a與平面α平行的條件下我們可以得到什么結(jié)論?
如果一條直線與一個(gè)平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。
高一數(shù)學(xué)月考的重要知識點(diǎn)分析3
直線的傾斜角與斜率
定義:
x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。
范圍:
傾斜角的取值范圍是0°≤α<180°。
理解:
(1)注意“兩個(gè)方向”:直線向上的方向、x軸的正方向;
(2)規(guī)定當(dāng)直線和x軸平行或重合時(shí),它的傾斜角為0度。
意義:
①直線的傾斜角,體現(xiàn)了直線對x軸正向的傾斜程度;
②在平面直角坐標(biāo)系中,每一條直線都有一個(gè)確定的傾斜角;
③傾斜角相同,未必表示同一條直線。
公式:
k=tanα
k>0時(shí)α∈(0°,90°)
k<0時(shí)α∈(90°,180°)
k=0時(shí)α=0°
當(dāng)α=90°時(shí)k不存在
ax+by+c=0(a≠0)傾斜角為A,
則tanA=-a/b,
A=arctan(-a/b)
當(dāng)a≠0時(shí),
傾斜角為90度,即與X軸垂直
練習(xí)題:
1.直線l經(jīng)過原點(diǎn)和(-1,1),則它的傾斜角為()
A.45°
B.135°
C.45°或135°
D.-45°
【解析】選B.直線l的斜率為k==-1,所以直線的傾斜角為鈍角135°.
2.設(shè)直線l與x軸的交點(diǎn)是P,且傾斜角為α,若將此直線繞點(diǎn)P按逆時(shí)針方向旋轉(zhuǎn)45°,得到直線的傾斜角為α+45°,則()
A.0°≤α<180°
B.0°≤α<135°
C.0°<α≤135°
D.0°<α<135°
【解析】選D.直線l與x軸相交,可知α≠0°,
又α與α+45°都是傾斜角,從而有
得0°<α<135°.
3.直線l的傾斜角是斜率為的直線的傾斜角的2倍,則l的斜率為()
A.1B.1C.3D.4
【解析】選B.因?yàn)閠anα=,0°≤α<180°,所以α=30°,
故2α=60°,所以k=tan60°=.故選B.
高一數(shù)學(xué)月考的重要知識點(diǎn)分析相關(guān)文章:
★ 高一數(shù)學(xué)知識點(diǎn)總結(jié)(考前必看)
★ 高一數(shù)學(xué)期末考試知識點(diǎn)總結(jié)
★ 高一數(shù)學(xué)重點(diǎn)知識點(diǎn)公式總結(jié)
★ 高一數(shù)學(xué)知識點(diǎn)總結(jié)歸納
★ 高一數(shù)學(xué)知識點(diǎn)總結(jié)
★ 高一數(shù)學(xué)知識點(diǎn)總結(jié)(人教版)