六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高一學(xué)習(xí)方法>高一數(shù)學(xué)>

高一數(shù)學(xué)期末復(fù)習(xí)的知識點(diǎn)分析

時(shí)間: 贊銳0 分享

正確處理好練習(xí)題。有不少同學(xué)把提物理成績的希望寄托在大量做題上,搞題海戰(zhàn)術(shù)。重要的不在做題多,而在于做題的效益要高、目的要達(dá)到。做題的目的在于檢查學(xué)過的知識,方法是否掌握得很好。以下是小編給大家整理的高一數(shù)學(xué)期末復(fù)習(xí)的知識點(diǎn)分析,希望能幫助到你!

高一數(shù)學(xué)期末復(fù)習(xí)的知識點(diǎn)分析1

等比數(shù)列前n項(xiàng)和公式S的基本性質(zhì)

⑴如果數(shù)列{a}是公比為q的等比數(shù)列,那么,它的前n項(xiàng)和公式是S=

也就是說,公比為q的等比數(shù)列的前n項(xiàng)和公式是q的分段函數(shù)的一系列函數(shù)值,分段的界限是在q=1處.因此,使用等比數(shù)列的前n項(xiàng)和公式,必須要弄清公比q是可能等于1還是必不等于1,如果q可能等于1,則需分q=1和q≠1進(jìn)行討論.

⑵當(dāng)已知a,q,n時(shí),用公式S=;當(dāng)已知a,q,a時(shí),用公式S=.

⑶若S是以q為公比的等比數(shù)列,則有S=S+qS.⑵

⑷若數(shù)列{a}為等比數(shù)列,則S,S-S,S-S,…仍然成等比數(shù)列.

⑸若項(xiàng)數(shù)為3n的等比數(shù)列(q≠-1)前n項(xiàng)和與前n項(xiàng)積分別為S與T,次n項(xiàng)和與次n項(xiàng)積分別為S與T,最后n項(xiàng)和與n項(xiàng)積分別為S與T,則S,S,S成等比數(shù)列,T,T,T亦成等比數(shù)列

萬能公式:sin2α=2tanα/(1+tan^2α)(注:tan^2α是指tan平方α)

cos2α=(1-tan^2α)/(1+tan^2α)tan2α=2tanα/(1-tan^2α)

升冪公式:1+cosα=2cos^2(α/2)1-cosα=2sin^2(α/2)1±sinα=(sin(α/2)±cos(α/2))^2

降冪公式:cos^2α=(1+cos2α)/2sin^2α=(1-cos2α)/21)sin(2kπ+α)=sinα,cos(2kπ+α)=cosα,tan(2kπ+α)=tanα,cot(2kπ+α)=cotα,其中k∈Z;

(2)sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα,cot(-α)=-cotα

(3)sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,cot(π+α)=cotα

(4)sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα,cot(π-α)=-cotα

(5)sin(π/2-α)=cosα,cos(π/2-α)=sinα,tan(π/2-α)=cotα,cot(π/2-α)=tanα

(6)sin(π/2+α)=cosα,cos(π/2+α)=-sinα,

tan(π/2+α)=-cotα,cot(π/2+α)=-tanα

(7)sin(3π/2+α)=-cosα,cos(3π/2+α)=sinα,

tan(3π/2+α)=-cotα,cot(3π/2+α)=-tanα

(8)sin(3π/2-α)=-cosα,cos(3π/2-α)=-sinα,

tan(3π/2-α)=cotα,cot(3π/2-α)=tanα(k·π/2±α),其中k∈Z

注意:為方便做題,習(xí)慣我們把α看成是一個(gè)位于第一象限且小于90°的角;

當(dāng)k是奇數(shù)的時(shí)候,等式右邊的三角函數(shù)發(fā)生變化,如sin變成cos.偶數(shù)則不變;

用角(k·π/2±α)所在的象限確定等式右邊三角函數(shù)的正負(fù).例:tan(3π/2+α)=-cotα

∵在這個(gè)式子中k=3,是奇數(shù),因此等式右邊應(yīng)變?yōu)閏ot

又,∵角(3π/2+α)在第四象限,tan在第四象限為負(fù)值,因此為使等式成立,等式右邊應(yīng)為-cotα.三角函數(shù)在各象限中的正負(fù)分布

sin:第一第二象限中為正;第三第四象限中為負(fù)cos:第一第四象限中為正;第二第三象限中為負(fù)cot、tan:第一第三象限中為正;第二第四象限中為負(fù)。

高一數(shù)學(xué)期末復(fù)習(xí)的知識點(diǎn)分析2

1.多面體的結(jié)構(gòu)特征

(1)棱柱有兩個(gè)面相互平行,其余各面都是平行四邊形,每相鄰兩個(gè)四邊形的公共邊平行。

正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形。

(2)棱錐的底面是任意多邊形,側(cè)面是有一個(gè)公共頂點(diǎn)的三角形。

正棱錐:底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過來,正棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面正多邊形的中心。

(3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。

2.旋轉(zhuǎn)體的結(jié)構(gòu)特征

(1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到.

(2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到.

(3)圓臺可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到。

(4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到。

3.空間幾何體的三視圖

空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖。

三視圖的長度特征:“長對正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長,側(cè)視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實(shí)、虛線的畫法。

4.空間幾何體的直觀圖

空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:

(1)畫幾何體的底面

在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點(diǎn)O,畫直觀圖時(shí),把它們畫成對應(yīng)的x′軸、y′軸,兩軸相交于點(diǎn)O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸.已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话搿?/p>

(2)畫幾何體的高

在已知圖形中過O點(diǎn)作z軸垂直于xOy平面,在直觀圖中對應(yīng)的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變。

高一數(shù)學(xué)期末復(fù)習(xí)的知識點(diǎn)分析3

一、定義與定義式:

自變量x和因變量y有如下關(guān)系:

y=kx+b

則此時(shí)稱y是x的一次函數(shù)。

特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。

即:y=kx(k為常數(shù),k≠0)

二、一次函數(shù)的性質(zhì):

1.y的變化值與對應(yīng)的x的變化值成正比例,比值為k

即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))

2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。

三、一次函數(shù)的圖像及性質(zhì):

1.作法與圖形:通過如下3個(gè)步驟

(1)列表;

(2)描點(diǎn);

(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))

2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b.(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。

3.k,b與函數(shù)圖像所在象限:

當(dāng)k>0時(shí),直線必通過一、三象限,y隨x的增大而增大;

當(dāng)k<0時(shí),直線必通過二、四象限,y隨x的增大而減小。

當(dāng)b>0時(shí),直線必通過一、二象限;

當(dāng)b=0時(shí),直線通過原點(diǎn)

當(dāng)b<0時(shí),直線必通過三、四象限。

特別地,當(dāng)b=O時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限

四、確定一次函數(shù)的表達(dá)式:

已知點(diǎn)A(x1,y1);B(x2,y2),請確定過點(diǎn)A、B的一次函數(shù)的表達(dá)式。

(1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b.

(2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b.所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……②

(3)解這個(gè)二元一次方程,得到k,b的值。

(4)最后得到一次函數(shù)的表達(dá)式。

五、一次函數(shù)在生活中的應(yīng)用:

1.當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt.

2.當(dāng)水池抽水速度f一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S.g=S-ft.

六、常用公式:(不全,希望有人補(bǔ)充)

1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

2.求與x軸平行線段的中點(diǎn):|x1-x2|/2

3.求與y軸平行線段的中點(diǎn):|y1-y2|/2

4.求任意線段的長:√(x1-x2)’2+(y1-y2)’2(注:根號下(x1-x2)與(y1-y2)的平方和)

高一數(shù)學(xué)函數(shù)知識點(diǎn)

1.拋物線是軸對稱圖形。對稱軸為直線

x=-b/2a。

對稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

特別地,當(dāng)b=0時(shí),拋物線的對稱軸是y軸(即直線x=0)

2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

P(-b/2a,(4ac-b’2)/4a)

當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b’2-4ac=0時(shí),P在x軸上。

3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。

|a|越大,則拋物線的開口越小。

4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對稱軸的位置。

當(dāng)a與b同號時(shí)(即ab>0),對稱軸在y軸左;

當(dāng)a與b異號時(shí)(即ab<0),對稱軸在y軸右。

5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

拋物線與y軸交于(0,c)

6.拋物線與x軸交點(diǎn)個(gè)數(shù)

Δ=b’2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

Δ=b’2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

Δ=b’2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b’2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

高一數(shù)學(xué)期末復(fù)習(xí)的知識點(diǎn)分析相關(guān)文章

高一數(shù)學(xué)期末考試知識點(diǎn)總結(jié)

高一數(shù)學(xué)期末必考的知識點(diǎn)歸納

高一數(shù)學(xué)期末考試試卷分析

高一數(shù)學(xué)知識點(diǎn)總結(jié)(考前必看)

高一數(shù)學(xué)知識點(diǎn)總結(jié)期末必備

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

高一數(shù)學(xué)知識點(diǎn)總結(jié)

高一期末數(shù)學(xué)復(fù)習(xí)計(jì)劃5篇

高一數(shù)學(xué)知識點(diǎn)新總結(jié)

高一數(shù)學(xué)知識點(diǎn)總結(jié)歸納

1070743