高一數(shù)學必修四的必學知識點解析
數(shù)學能力只有在數(shù)學思想方法不斷地運用反思中才能培養(yǎng)和提高。在學習高中數(shù)學的過程中,肯定會遇到不少困難和問題,要有克服困難的勇氣和信心,才能使自己進步,下面是小編給大家?guī)淼?a href='http://www.yishupeixun.net/xuexiff/gaoyishuxue/' target='_blank'>高一數(shù)學必修四的必學知識點解析,希望能幫助到你!
高一數(shù)學必修四的必學知識點解析1
數(shù)列的圖象
對于數(shù)列4,5,6,7,8,9,10每一項的序號與這一項有下面的對應關系:
序號:1234567
項:45678910
這就是說,上面可以看成是一個序號集合到另一個數(shù)的集合的映射.因此,從映射、函數(shù)的觀點看,數(shù)列可以看作是一個定義域為正整集N_(或它的有限子集{1,2,3,…,n})的函數(shù),當自變量從小到大依次取值時,對應的一列函數(shù)值.這里的函數(shù)是一種特殊的函數(shù),它的自變量只能取正整數(shù).
由于數(shù)列的項是函數(shù)值,序號是自變量,數(shù)列的通項公式也就是相應函數(shù)和解析式.
數(shù)列是一種特殊的函數(shù),數(shù)列是可以用圖象直觀地表示的.
數(shù)列用圖象來表示,可以以序號為橫坐標,相應的項為縱坐標,描點畫圖來表示一個數(shù)列,在畫圖時,為方便起見,在平面直角坐標系兩條坐標軸上取的單位長度可以不同,從數(shù)列的圖象表示可以直觀地看出數(shù)列的變化情況,但不精確.
把數(shù)列與函數(shù)比較,數(shù)列是特殊的函數(shù),特殊在定義域是正整數(shù)集或由以1為首的有限連續(xù)正整數(shù)組成的集合,其圖象是無限個或有限個孤立的點.
高一數(shù)學必修四的必學知識點解析2
解三角形
(1)正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題.
(2)應用
能夠運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關的實際問題.
數(shù)列
(1)數(shù)列的概念和簡單表示法
①了解數(shù)列的概念和幾種簡單的表示方法(列表、圖象、通項公式).
②了解數(shù)列是自變量為正整數(shù)的一類函數(shù).
(2)等差數(shù)列、等比數(shù)列
①理解等差數(shù)列、等比數(shù)列的概念.
②掌握等差數(shù)列、等比數(shù)列的通項公式與前項和公式.
③能在具體的問題情境中,識別數(shù)列的等差關系或等比關系,并能用有關知識解決相應的問題.
④了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關系.
高一數(shù)學必修四的必學知識點解析3
不等式
不等關系
了解現(xiàn)實世界和日常生活中的不等關系,了解不等式(組)的實際背景.
(2)一元二次不等式
①會從實際情境中抽象出一元二次不等式模型.
②通過函數(shù)圖象了解一元二次不等式與相應的二次函數(shù)、一元二次方程的聯(lián)系.
③會解一元二次不等式,對給定的一元二次不等式,會設計求解的程序框圖.
(3)二元一次不等式組與簡單線性規(guī)劃問題
①會從實際情境中抽象出二元一次不等式組.
②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
③會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.
(4)基本不等式:
①了解基本不等式的證明過程.
②會用基本不等式解決簡單的(小)值問題圓的輔助線一般為連圓心與切線或者連圓心與弦中點
高一數(shù)學必修四的必學知識點解析相關文章: