六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) >

人教版高一數(shù)學(xué)必修三知識(shí)點(diǎn)

時(shí)間: 錦祥20 分享

高一新生要作好充分思想準(zhǔn)備,以自信、寬容的心態(tài),盡快融入集體,適應(yīng)新同學(xué)、適應(yīng)新校園環(huán)境、適應(yīng)與初中迥異的紀(jì)律制度。下面是小編為大家精心整理的人教版高一數(shù)學(xué)必修三知識(shí)點(diǎn),希望對(duì)大家有所幫助。

人教版高一數(shù)學(xué)必修三知識(shí)點(diǎn)


人教版高一數(shù)學(xué)必修三知識(shí)點(diǎn)

(1)指數(shù)函數(shù)的定義域?yàn)樗袑?shí)數(shù)的集合,這里的前提是a大于0,對(duì)于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

(2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。

(3)函數(shù)圖形都是下凹的。

(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

(5)可以看到一個(gè)顯然的規(guī)律,就是當(dāng)a從0趨向于無(wú)窮大的過(guò)程中(當(dāng)然不能等于0),函數(shù)的曲線(xiàn)從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線(xiàn)y=1是從遞減到遞增的一個(gè)過(guò)渡位置。

(6)函數(shù)總是在某一個(gè)方向上無(wú)限趨向于X軸,永不相交。

(7)函數(shù)總是通過(guò)(0,1)這點(diǎn)。

(8)顯然指數(shù)函數(shù)無(wú)界。

奇偶性

定義

一般地,對(duì)于函數(shù)f(x)

(1)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。

(2)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。

(3)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)同時(shí)成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱(chēng)為既奇又偶函數(shù)。

(4)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱(chēng)為非奇非偶函數(shù)。

人教版高一數(shù)學(xué)知識(shí)點(diǎn)

1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

(1)棱柱:

定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線(xiàn)的端點(diǎn)字母,如五棱柱。

幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。

分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

表示:用各頂點(diǎn)字母,如五棱錐

幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

(3)棱臺(tái):

定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

表示:用各頂點(diǎn)字母,如五棱臺(tái)

幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

(4)圓柱:

定義:以矩形的一邊所在的直線(xiàn)為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。

幾何特征:①底面是全等的圓;②母線(xiàn)與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開(kāi)圖是一個(gè)矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。

幾何特征:①底面是一個(gè)圓;②母線(xiàn)交于圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)扇形。

(6)圓臺(tái):

定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線(xiàn)交于原圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)弓形。

(7)球體:

定義:以半圓的直徑所在直線(xiàn)為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線(xiàn)從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;

俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;

側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測(cè)畫(huà)法

斜二測(cè)畫(huà)法特點(diǎn):

①原來(lái)與x軸平行的線(xiàn)段仍然與x平行且長(zhǎng)度不變;

②原來(lái)與y軸平行的線(xiàn)段仍然與y平行,長(zhǎng)度為原來(lái)的一半。

高一數(shù)學(xué)必修三知識(shí)點(diǎn)

1.一些基本概念:

(1)向量:既有大小,又有方向的量.

(2)數(shù)量:只有大小,沒(méi)有方向的量.

(3)有向線(xiàn)段的三要素:起點(diǎn)、方向、長(zhǎng)度.

(4)零向量:長(zhǎng)度為0的向量.

(5)單位向量:長(zhǎng)度等于1個(gè)單位的向量.

(6)平行向量(共線(xiàn)向量):方向相同或相反的非零向量.

※零向量與任一向量平行.

(7)相等向量:長(zhǎng)度相等且方向相同的向量.

2.向量加法運(yùn)算:

⑴三角形法則的特點(diǎn):首尾相連.

⑵平行四邊形法則的特點(diǎn):共起點(diǎn)




人教版高一數(shù)學(xué)必修三知識(shí)點(diǎn)相關(guān)文章:

高中數(shù)學(xué)必修三知識(shí)點(diǎn)歸納總結(jié)

高中數(shù)學(xué)必修三概率知識(shí)點(diǎn)

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(人教版)

高中數(shù)學(xué)必修三目錄人教版

高一數(shù)學(xué)必修一第三單元復(fù)習(xí)知識(shí)點(diǎn)

高中數(shù)學(xué)必修三算法初步知識(shí)點(diǎn)講解

高中數(shù)學(xué)必修知識(shí)點(diǎn)

高一數(shù)學(xué)人教版上學(xué)期知識(shí)點(diǎn)

高一數(shù)學(xué)必背知識(shí)點(diǎn)總結(jié)

高一數(shù)學(xué)知識(shí)點(diǎn)全面總結(jié)

1076121