高一數(shù)學(xué)考點(diǎn)知識(shí)點(diǎn)總結(jié)
數(shù)學(xué)是考試的重點(diǎn)考察科目,數(shù)學(xué)知識(shí)的積累和解題方法的掌握,需要科學(xué)有效的復(fù)習(xí)方法,同時(shí)需要持之以恒的堅(jiān)持。下面是小編給大家整理的一些高一數(shù)學(xué)的知識(shí)點(diǎn),希望對(duì)大家有所幫助。
高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)梳理
空間幾何體表面積體積公式:
1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、a-邊長(zhǎng),S=6a2,V=a3
4、長(zhǎng)方體a-長(zhǎng),b-寬,c-高S=2(ab+ac+bc)V=abc
5、棱柱S-h-高V=Sh
6、棱錐S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6
9、圓柱r-底半徑,h-高,C—底面周長(zhǎng)S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)
11、r-底半徑h-高V=πr^2h/3
12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球臺(tái)r1和r2-球臺(tái)上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4
17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線(xiàn)是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線(xiàn)是拋物線(xiàn)形)
高一數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)
空間兩條直線(xiàn)只有三種位置關(guān)系:平行、相交、異面
1、按是否共面可分為兩類(lèi):
(1)共面:平行、相交
(2)異面:
異面直線(xiàn)的定義:不同在任何一個(gè)平面內(nèi)的兩條直線(xiàn)或既不平行也不相交。
異面直線(xiàn)判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線(xiàn),與平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線(xiàn)是異面直線(xiàn)。
兩異面直線(xiàn)所成的角:范圍為(0°,90°)
esp.空間向量法
兩異面直線(xiàn)間距離:公垂線(xiàn)段(有且只有一條)
esp.空間向量法
2、若從有無(wú)公共點(diǎn)的角度看可分為兩類(lèi):
(1)有且僅有一個(gè)公共點(diǎn)——相交直線(xiàn);(2)沒(méi)有公共點(diǎn)——平行或異面
直線(xiàn)和平面的位置關(guān)系:
直線(xiàn)和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行
①直線(xiàn)在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn)
②直線(xiàn)和平面相交——有且只有一個(gè)公共點(diǎn)
直線(xiàn)與平面所成的角:平面的一條斜線(xiàn)和它在這個(gè)平面內(nèi)的射影所成的銳角。
空間向量法(找平面的法向量)
規(guī)定:
a、直線(xiàn)與平面垂直時(shí),所成的角為直角,
b、直線(xiàn)與平面平行或在平面內(nèi),所成的角為0°角
由此得直線(xiàn)和平面所成角的取值范圍為[0°,90°]
最小角定理:斜線(xiàn)與平面所成的角是斜線(xiàn)與該平面內(nèi)任一條直線(xiàn)所成角中的最小角
三垂線(xiàn)定理及逆定理:如果平面內(nèi)的一條直線(xiàn),與這個(gè)平面的一條斜線(xiàn)的射影垂直,那么它也與這條斜線(xiàn)垂直
直線(xiàn)和平面垂直
直線(xiàn)和平面垂直的定義:如果一條直線(xiàn)a和一個(gè)平面內(nèi)的任意一條直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)a和平面互相垂直.直線(xiàn)a叫做平面的垂線(xiàn),平面叫做直線(xiàn)a的垂面。
直線(xiàn)與平面垂直的判定定理:如果一條直線(xiàn)和一個(gè)平面內(nèi)的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直于這個(gè)平面。
直線(xiàn)與平面垂直的性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。③直線(xiàn)和平面平行——沒(méi)有公共點(diǎn)
直線(xiàn)和平面平行的定義:如果一條直線(xiàn)和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線(xiàn)和這個(gè)平面平行。
直線(xiàn)和平面平行的判定定理:如果平面外一條直線(xiàn)和這個(gè)平面內(nèi)的一條直線(xiàn)平行,那么這條直線(xiàn)和這個(gè)平面平行。
直線(xiàn)和平面平行的性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,那么這條直線(xiàn)和交線(xiàn)平行。
高一數(shù)學(xué)必修四知識(shí)點(diǎn)梳理
一)兩角和差公式(寫(xiě)的都要記)
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
二)用以上公式可推出下列二倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2
(上面這個(gè)余弦的很重要)
sin2A=2sinA.cosA
三)半角的只需記住這個(gè):
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
四)用二倍角中的余弦可推出降冪公式
(sinA)^2=(1-cos2A)/2
(cosA)^2=(1+cos2A)/2
五)用以上降冪公式可推出以下常用的化簡(jiǎn)公式
1-cosA=sin^(A/2).2
1-sinA=cos^(A/2).2
高一數(shù)學(xué)考點(diǎn)知識(shí)點(diǎn)總結(jié)相關(guān)文章:
★ 高一數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)公式總結(jié)
★ 高一數(shù)學(xué)知識(shí)點(diǎn)匯總大全
★ 高一數(shù)學(xué)重要知識(shí)點(diǎn)
★ 高一數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)
★ 高一數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納
★ 高一數(shù)學(xué)知識(shí)點(diǎn)全面總結(jié)