六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學習啦>學習方法>高中學習方法>高一學習方法>高一數(shù)學>

人教版高一數(shù)學知識點總結(jié)

時間: 躍瀚0 分享

偉大的成績和辛勤勞動是成正比例的,有一分勞動就有一分收獲,積累,從少到多,奇跡就可以創(chuàng)造出來。學習也是一樣的,需要積累,從少變多。下面是小編給大家整理的一些高一數(shù)學知識點,希望對大家有所幫助。

高一上冊數(shù)學必修一知識點梳理

兩個平面的位置關(guān)系:

(1)兩個平面互相平行的定義:空間兩平面沒有公共點

(2)兩個平面的位置關(guān)系:

兩個平面平行-----沒有公共點;兩個平面相交-----有一條公共直線。

a、平行

兩個平面平行的判定定理:如果一個平面內(nèi)有兩條相交直線都平行于另一個平面,那么這兩個平面平行。

兩個平面平行的性質(zhì)定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。

b、相交

二面角

(1)半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

(2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

(3)二面角的棱:這一條直線叫做二面角的棱。

(4)二面角的面:這兩個半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

esp.兩平面垂直

兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

兩平面垂直的判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直

兩個平面垂直的性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于交線的直線垂直于另一個平面。

高一數(shù)學必修五知識點總結(jié)

⑴公差為d的等差數(shù)列,各項同加一數(shù)所得數(shù)列仍是等差數(shù)列,其公差仍為d.

⑵公差為d的等差數(shù)列,各項同乘以常數(shù)k所得數(shù)列仍是等差數(shù)列,其公差為kd.

⑶若{a}、為等差數(shù)列,則{a±b}與{ka+b}(k、b為非零常數(shù))也是等差數(shù)列.

⑷對任何m、n,在等差數(shù)列{a}中有:a=a+(n-m)d,特別地,當m=1時,便得等差數(shù)列的通項公式,此式較等差數(shù)列的通項公式更具有一般性.

⑸、一般地,如果l,k,p,…,m,n,r,…皆為自然數(shù),且l+k+p+…=m+n+r+…(兩邊的自然數(shù)個數(shù)相等),那么當{a}為等差數(shù)列時,有:a+a+a+…=a+a+a+….

⑹公差為d的等差數(shù)列,從中取出等距離的項,構(gòu)成一個新數(shù)列,此數(shù)列仍是等差數(shù)列,其公差為kd(k為取出項數(shù)之差).

⑺如果{a}是等差數(shù)列,公差為d,那么,a,a,…,a、a也是等差數(shù)列,其公差為-d;在等差數(shù)列{a}中,a-a=a-a=md.(其中m、k、)

⑻在等差數(shù)列中,從第一項起,每一項(有窮數(shù)列末項除外)都是它前后兩項的等差中項.

⑼當公差d>0時,等差數(shù)列中的數(shù)隨項數(shù)的增大而增大;當d<0時,等差數(shù)列中的數(shù)隨項數(shù)的減少而減小;d=0時,等差數(shù)列中的數(shù)等于一個常數(shù).

⑽設(shè)a,a,a為等差數(shù)列中的三項,且a與a,a與a的項距差之比=(≠-1),則a=.

⑴數(shù)列{a}為等差數(shù)列的充要條件是:數(shù)列{a}的前n項和S可以寫成S=an+bn的形式(其中a、b為常數(shù)).

⑵在等差數(shù)列{a}中,當項數(shù)為2n(nN)時,S-S=nd,=;當項數(shù)為(2n-1)(n)時,S-S=a,=.

⑶若數(shù)列{a}為等差數(shù)列,則S,S-S,S-S,…仍然成等差數(shù)列,公差為.

⑷若兩個等差數(shù)列{a}、的前n項和分別是S、T(n為奇數(shù)),則=.

⑸在等差數(shù)列{a}中,S=a,S=b(n>m),則S=(a-b).

⑹等差數(shù)列{a}中,是n的一次函數(shù),且點(n,)均在直線y=x+(a-)上.

⑺記等差數(shù)列{a}的前n項和為S.①若a>0,公差d<0,則當a≥0且a≤0時,S;②若a<0,公差d>0,則當a≤0且a≥0時,S最小.

高一數(shù)學必修四知識點梳理

1.回歸分析:

就是對具有相關(guān)關(guān)系的兩個變量之間的關(guān)系形式進行測定,確定一個相關(guān)的數(shù)學表達式,以便進行估計預(yù)測的統(tǒng)計分析方法。根據(jù)回歸分析方法得出的數(shù)學表達式稱為回歸方程,它可能是直線,也可能是曲線。

2.線性回歸方程

設(shè)x與y是具有相關(guān)關(guān)系的兩個變量,且相應(yīng)于n組觀測值的n個點(xi,yi)(i=1,......,n)大致分布在一條直線的附近,則回歸直線的方程為。

其中。

3.線性相關(guān)性檢驗

線性相關(guān)性檢驗是一種假設(shè)檢驗,它給出了一個具體檢驗y與x之間線性相關(guān)與否的辦法。

①在課本附表3中查出與顯著性水平0.05與自由度n-2(n為觀測值組數(shù))相應(yīng)的相關(guān)系數(shù)臨界值r0.05。

②由公式,計算r的值。

③檢驗所得結(jié)果

如果|r|≤r0.05,可以認為y與x之間的線性相關(guān)關(guān)系不顯著,接受統(tǒng)計假設(shè)。

如果|r|>r0.05,可以認為y與x之間不具有線性相關(guān)關(guān)系的假設(shè)是不成立的,即y與x之間具有線性相關(guān)關(guān)系。

人教版高一數(shù)學教材知識點總結(jié)相關(guān)文章

高一數(shù)學知識點總結(jié)(人教版)

高中階段的高一數(shù)學課本知識點歸納

高一數(shù)學知識點人教版

高一數(shù)學知識點總結(jié)歸納

高一數(shù)學課本的相關(guān)主要知識點

高一數(shù)學必修一知識點匯總

高一數(shù)學人教版上學期知識點

高一數(shù)學必修4知識點總結(jié)(人教版)

人教版高中數(shù)學知識點提綱

人教版高中數(shù)學必修一知識點

1169085