高一數(shù)學(xué)知識(shí)點(diǎn)歸納整理
沒有加倍的勤奮,就沒有才能,也沒有天才。天才其實(shí)就是可以持之以恒的人。勤能補(bǔ)拙是良訓(xùn),一分辛苦一分才,勤奮一直都是學(xué)習(xí)通向成功的最好捷徑。下面是小編給大家整理的一些高一數(shù)學(xué)的知識(shí)點(diǎn),希望對(duì)大家有所幫助。
高一數(shù)學(xué)必修二知識(shí)點(diǎn)梳理
公式一:
設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α與-α的三角函數(shù)值之間的關(guān)系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
高一下冊數(shù)學(xué)必修一知識(shí)點(diǎn)
一、指數(shù)函數(shù)
(一)指數(shù)與指數(shù)冪的運(yùn)算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.
當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).
當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。
注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),
2.分?jǐn)?shù)指數(shù)冪
正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義
指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.
3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)
(二)指數(shù)函數(shù)及其性質(zhì)
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽.
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.
2、指數(shù)函數(shù)的圖象和性質(zhì)
高一數(shù)學(xué)知識(shí)點(diǎn)整理
考點(diǎn)一、映射的概念
1.了解對(duì)應(yīng)大千世界的對(duì)應(yīng)共分四類,分別是:一對(duì)一多對(duì)一一對(duì)多多對(duì)多
2.映射:設(shè)A和B是兩個(gè)非空集合,如果按照某種對(duì)應(yīng)關(guān)系f,對(duì)于集合A中的任意一個(gè)元素x,在集合B中都存在的一個(gè)元素y與之對(duì)應(yīng),那么,就稱對(duì)應(yīng)f:A→B為集合A到集合B的一個(gè)映射(mapping).映射是特殊的對(duì)應(yīng),簡稱“對(duì)一”的對(duì)應(yīng)。包括:一對(duì)一多對(duì)一
考點(diǎn)二、函數(shù)的概念
1.函數(shù):設(shè)A和B是兩個(gè)非空的數(shù)集,如果按照某種確定的對(duì)應(yīng)關(guān)系f,對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都存在確定的數(shù)y與之對(duì)應(yīng),那么,就稱對(duì)應(yīng)f:A→B為集合A到集合B的一個(gè)函數(shù)。記作y=f(x),xA.其中x叫自變量,x的取值范圍A叫函數(shù)的定義域;與x的值相對(duì)應(yīng)的y的值函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域。函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射。
2.函數(shù)的三要素:定義域、值域、對(duì)應(yīng)關(guān)系。這是判斷兩個(gè)函數(shù)是否為同一函數(shù)的依據(jù)。
3.區(qū)間的概念:設(shè)a,bR,且a
①(a,b)={xa
⑤(a,+∞)={_>a}⑥[a,+∞)={_≥a}⑦(-∞,b)={_
考點(diǎn)三、函數(shù)的表示方法
1.函數(shù)的三種表示方法列表法圖象法解析法
2.分段函數(shù):定義域的不同部分,有不同的對(duì)應(yīng)法則的函數(shù)。注意兩點(diǎn):①分段函數(shù)是一個(gè)函數(shù),不要誤認(rèn)為是幾個(gè)函數(shù)。②分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集。
考點(diǎn)四、求定義域的幾種情況
①若f(x)是整式,則函數(shù)的定義域是實(shí)數(shù)集R;
②若f(x)是分式,則函數(shù)的定義域是使分母不等于0的實(shí)數(shù)集;
③若f(x)是二次根式,則函數(shù)的定義域是使根號(hào)內(nèi)的式子大于或等于0的實(shí)數(shù)集合;
④若f(x)是對(duì)數(shù)函數(shù),真數(shù)應(yīng)大于零。
⑤.因?yàn)榱愕牧愦蝺鐩]有意義,所以底數(shù)和指數(shù)不能同時(shí)為零。
⑥若f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)集合;
⑦若f(x)是由實(shí)際問題抽象出來的函數(shù),則函數(shù)的定義域應(yīng)符合實(shí)際問題
高一數(shù)學(xué)知識(shí)點(diǎn)歸納整理相關(guān)文章:
★ 高一數(shù)學(xué)知識(shí)點(diǎn)小歸納
★ 高一數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
★ 高中數(shù)學(xué)全部知識(shí)點(diǎn)提綱整理
★ 高一數(shù)學(xué)知識(shí)點(diǎn)全面總結(jié)
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納
★ 高一數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)歸納
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(人教版)