六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) >

高一下學(xué)期數(shù)學(xué)知識點

時間: 淑娟20 分享

高一數(shù)學(xué)怎么鞏固復(fù)習(xí)呢?首先總結(jié)知識點,然后重點比較自己模糊與不清晰的地方,做幾道習(xí)題,要是不懂再去問人!今天小編在這給大家整理了高一下學(xué)期數(shù)學(xué)知識點_高中數(shù)學(xué)知識點整理,接下來隨著小編一起來看看吧!

高一下學(xué)期數(shù)學(xué)知識點

高一數(shù)學(xué)知識點總結(jié)(一)

1.一些基本概念:

(1)向量:既有大小,又有方向的量.

(2)數(shù)量:只有大小,沒有方向的量.

(3)有向線段的三要素:起點、方向、長度.

(4)零向量:長度為0的向量.

(5)單位向量:長度等于1個單位的向量.

(6)平行向量(共線向量):方向相同或相反的非零向量.

※零向量與任一向量平行.

(7)相等向量:長度相等且方向相同的向量.

2.向量加法運算:

⑴三角形法則的特點:首尾相連.

⑵平行四邊形法則的特點:共起點

高一數(shù)學(xué)知識點總結(jié)(二)

方程的根與函數(shù)的零點

1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:

方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.

3、函數(shù)零點的求法:

求函數(shù)的零點:

1(代數(shù)法)求方程的實數(shù)根;

2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.

4、二次函數(shù)的零點:

二次函數(shù).

1、△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.

2、△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

3、△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.

高一數(shù)學(xué)知識點總結(jié)(三)

1.“包含”關(guān)系—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

實例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同”

結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

①任何一個集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

③如果AíB,BíC,那么AíC

④如果AíB同時BíA那么A=B

3.不含任何元素的集合叫做空集,記為Φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

高一數(shù)學(xué)知識點總結(jié)(四)

對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

排除了為0這種可能,即對于x<0和x>0的所有實數(shù),q不能是偶數(shù);

排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。

總結(jié)起來,就可以得到當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);

如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。

在x大于0時,函數(shù)的值域總是大于0的實數(shù)。

在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。

而只有a為正數(shù),0才進入函數(shù)的值域。

由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.

可以看到:

(1)所有的圖形都通過(1,1)這點。

(2)當a大于0時,冪函數(shù)為單調(diào)遞增的,而a小于0時,冪函數(shù)為單調(diào)遞減函數(shù)。

(3)當a大于1時,冪函數(shù)圖形下凹;當a小于1大于0時,冪函數(shù)圖形上凸。

(4)當a小于0時,a越小,圖形傾斜程度越大。

(5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。

(6)顯然冪函數(shù)無界。

高一數(shù)學(xué)知識點總結(jié)(五)

??贾R點

集合常用大寫拉丁字母來表示,如:A,B,C…而對于集合中的元素則用小寫的拉丁字母來表示,如:a,b,c…拉丁字母只是相當于集合的名字,沒有任何實際的意義。

將拉丁字母賦給集合的方法是用一個等式來表示的,例如:A={…}的形式。等號左邊是大寫的拉丁字母,右邊花括號括起來的,括號內(nèi)部是具有某種共同性質(zhì)的數(shù)學(xué)元素。

常用的有列舉法和描述法。

1.列舉法﹕常用于表示有限集合,把集合中的所有元素一一列舉出來﹐寫在大括號內(nèi)﹐這種表示集合的方法叫做列舉法。{1,2,3,……}

2.描述法﹕常用于表示無限集合,把集合中元素的公共屬性用文字﹐符號或式子等描述出來﹐寫在大括號內(nèi)﹐這種表示集合的方法叫做描述法。{x|P}(x為該集合的元素的一般形式,P為這個集合的元素的共同屬性)如:小于π的正實數(shù)組成的集合表示為:{x|0<x<π}

3.圖示法(venn圖)﹕為了形象表示集合,我們常常畫一條封閉的曲線(或者說圓圈),用它的內(nèi)部表示一個集合。集合

自然語言常用數(shù)集的符號:

(1)全體非負整數(shù)的集合通常簡稱非負整數(shù)集(或自然數(shù)集),記作N;不包括0的自然數(shù)集合,記作N+

(2)非負整數(shù)集內(nèi)排除0的集,也稱正整數(shù)集,記作Z+;負整數(shù)集內(nèi)也排除0的集,稱負整數(shù)集,記作Z-

(3)全體整數(shù)的集合通常稱作整數(shù)集,記作Z

(4)全體有理數(shù)的集合通常簡稱有理數(shù)集,記作Q。Q={p/q|p∈Z,q∈N,且p,q互質(zhì)}(正負有理數(shù)集合分別記作Q+Q-)

(5)全體實數(shù)的集合通常簡稱實數(shù)集,記作R(正實數(shù)集合記作R+;負實數(shù)記作R-)

(6)復(fù)數(shù)集合計作C集合的運算:集合交換律A∩B=B∩A A∪B=B∪A集合結(jié)合律(A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)集合分配律A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)集合德.摩根律集合

Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB集合“容斥原理”在研究集合時,會遇到有關(guān)集合中的元素個數(shù)問題,我們把有限集合A的元素個數(shù)記為card(A)。

集合吸收律A∪(A∩B)=AA∩(A∪B)=A集合求補律A∪CuA=UA∩CuA=Φ設(shè)A為集合,把A的全部子集構(gòu)成的集合叫做A的冪集德摩根律A-(BUC)=(A-B)∩(A-C)A-(B∩C)=(A-B)U(A-C)~(BUC)=~B∩~C~(B∩C)=~BU~C~Φ=E~E=Φ特殊集合的表示復(fù)數(shù)集C實數(shù)集R正實數(shù)集R+負實數(shù)集R-整數(shù)集Z正整數(shù)集Z+負整數(shù)集Z-有理數(shù)集Q正有理數(shù)集Q+負有理數(shù)集Q-不含0的有理數(shù)集Q。

高一下學(xué)期數(shù)學(xué)知識點總結(jié)相關(guān)文章:

高一學(xué)期數(shù)學(xué)基本知識點歸納

最新2020高一下學(xué)期數(shù)學(xué)教學(xué)工作總結(jié)5篇

高一數(shù)學(xué)期末知識點總結(jié)

高一數(shù)學(xué)期末考試知識點總結(jié)

高一數(shù)學(xué)下學(xué)期教學(xué)總結(jié)

高一數(shù)學(xué)知識點總結(jié)歸納

高一數(shù)學(xué)冪函數(shù)知識點總結(jié)

高一上下學(xué)期必須學(xué)會的知識點復(fù)習(xí)大綱

高一下學(xué)期數(shù)學(xué)教學(xué)工作總結(jié)范文2020

474600