六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高一學(xué)習(xí)方法>高一數(shù)學(xué)>

最新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間: 淑娟0 分享

高一數(shù)學(xué)怎么學(xué)?首先應(yīng)做好課前的物質(zhì)準(zhǔn)備和精神準(zhǔn)備,以使得上課時(shí)不至于出現(xiàn)書(shū)、本等物丟三落四的現(xiàn)象;今天小編在這給大家整理了高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié),接下來(lái)隨著小編一起來(lái)看看吧!

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

圓的方程

1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。

2、圓的方程

(1)標(biāo)準(zhǔn)方程,

圓心,半徑為r;

(2)一般方程

當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為

當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形。

(3)求圓方程的方法

一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,

若利用圓的標(biāo)準(zhǔn)方程,需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。

3、直線與圓的位置關(guān)系:

直線與圓的位置關(guān)系有相離,相切,相交三種情況,基本上由下列兩種方法判斷:

(1)設(shè)直線,圓,圓心到l的距離為,則有;;

(2)過(guò)圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

(3)過(guò)圓上一點(diǎn)的切線方程:

①圓x2+y2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(課本命題).

②圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2(課本命題的推廣).

4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。

設(shè)圓,

兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。

當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;

當(dāng)時(shí)兩圓外切,連心線過(guò)切點(diǎn),有外公切線兩條,內(nèi)公切線一條;

當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過(guò)切點(diǎn),只有一條公切線;

當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓。

高一數(shù)學(xué)知識(shí)點(diǎn)歸納

直線、圓的位置關(guān)系

由直線與圓的公共點(diǎn)的個(gè)數(shù),得出以下直線和圓的三種位置關(guān)系:

(1)相交:直線與圓有兩個(gè)公共點(diǎn)時(shí),叫做直線和圓相交.這時(shí)直線叫做圓的割線.

(2)相切:直線和圓有公共點(diǎn)時(shí),叫做直線和圓相切.這時(shí)直線叫做圓的切線,的公共點(diǎn)叫做切點(diǎn).

(3)相離:直線和圓沒(méi)有公共點(diǎn)時(shí),叫做直線和圓相離.

直線與圓的位置關(guān)系的數(shù)量特征

1、遷移:點(diǎn)與圓的位置關(guān)系

(1)點(diǎn)P在⊙O內(nèi)dr.

2、歸納概括:

如果⊙O的半徑為r,圓心O到直線l的距離為d,那么

(1)直線l和⊙O相交dr.

練習(xí)題:

1.直線L上的一點(diǎn)到圓心的距離等于⊙O的半徑,則L與⊙O的位置關(guān)系是()

A.相離

B.相切

C.相交

D.相切或相交

2.圓的的弦長(zhǎng)為12cm,如果直線與圓相交,且直線與圓心的距離為d,那么()

A.d<6cm

B.6cm

C.d≥6cm

D.d>12cm

3.P是⊙O外一點(diǎn),PA、PB切⊙O于點(diǎn)A、B,Q是優(yōu)弧AB上的一點(diǎn),設(shè)∠APB=α,∠AQB=β,則α與β的關(guān)系是()

A.α=β

B.α+β=90°

C.α+2β=180°

D.2α+β=180°

4.在⊙O中,弦AB和CD相交于點(diǎn)P,若PA=4,PB=7,CD=12,則以PC、PD的長(zhǎng)為根的一元二次方程為()

A.x2+12x+28=0

B.x2-12x+28=0

C.x2-11x+12=0

D.x2+11x+12=0

高一數(shù)學(xué)知識(shí)點(diǎn)匯總

空間直角坐標(biāo)系

空間直角坐標(biāo)系定義:

過(guò)定點(diǎn)O,作三條互相垂直的數(shù)軸,它們都以O(shè)為原點(diǎn)且一般具有相同的長(zhǎng)度單位、這三條軸分別叫做x軸(橫軸)、y軸(縱軸)、z軸(豎軸);統(tǒng)稱坐標(biāo)軸、通常把x軸和y軸配置在水平面上,而z軸則是鉛垂線;它們的正方向要符合右手規(guī)則,即以右手握住z軸,當(dāng)右手的四指從正向x軸以π/2角度轉(zhuǎn)向正向y軸時(shí),大拇指的指向就是z軸的正向,這樣的三條坐標(biāo)軸就組成了一個(gè)空間直角坐標(biāo)系,點(diǎn)O叫做坐標(biāo)原點(diǎn)。

1、右手直角坐標(biāo)系

①右手直角坐標(biāo)系的建立規(guī)則:x軸、y軸、z軸互相垂直,分別指向右手的拇指、食指、中指;

②已知點(diǎn)的坐標(biāo)P(x,y,z)作點(diǎn)的方法與步驟(路徑法):

沿x軸正方向(x>0時(shí))或負(fù)方向(x<0時(shí))移動(dòng)|x|個(gè)單位,再沿y軸正方向(y>0時(shí))或負(fù)方向(y<0時(shí))移動(dòng)|y|個(gè)單位,最后沿x軸正方向(z>0時(shí))或負(fù)方向(z<>

③已知點(diǎn)的位置求坐標(biāo)的方法:

過(guò)P作三個(gè)平面分別與x軸、y軸、z軸垂直于A,B,C,點(diǎn)A,B,C在x軸、y軸、z軸的坐標(biāo)分別是a,b,c則(a,b,c)就是點(diǎn)P的坐標(biāo)。

2、在x軸上的點(diǎn)分別可以表示為(a,0,0),(0,b,0),(0,0,c)。

在坐標(biāo)平面xOy,xOz,yOz內(nèi)的點(diǎn)分別可以表示為(a,b,0),(a,0,c),(0,b,c)。

3、點(diǎn)P(a,b,c)關(guān)于x軸的對(duì)稱點(diǎn)的坐標(biāo)為(a,-b,-c);

點(diǎn)P(a,b,c)關(guān)于y軸的對(duì)稱點(diǎn)的坐標(biāo)為(-a,b,-c);

點(diǎn)P(a,b,c)關(guān)于z軸的對(duì)稱點(diǎn)的坐標(biāo)為(-a,-b,c);

點(diǎn)P(a,b,c)關(guān)于坐標(biāo)平面xOy的對(duì)稱點(diǎn)為(a,b,-c);

點(diǎn)P(a,b,c)關(guān)于坐標(biāo)平面xOz的對(duì)稱點(diǎn)為(a,-b,c);

點(diǎn)P(a,b,c)關(guān)于坐標(biāo)平面yOz的對(duì)稱點(diǎn)為(-a,b,c);

點(diǎn)P(a,b,c)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)(-a,-b,-c)。

4、已知空間兩點(diǎn)P(x1,y1,z1),Q(x2,y2,z2),則線段PQ的中點(diǎn)坐標(biāo)為

5、空間兩點(diǎn)間的距離公式

已知空間兩點(diǎn)P(x1,y1,z1),Q(x2,y2,z2),則兩點(diǎn)的距離為特殊點(diǎn)A(x,y,z)到原點(diǎn)O的距離為

6、以C(x0,y0,z0)為球心,r為半徑的球面方程為

特殊地,以原點(diǎn)為球心,r為半徑的球面方程為x2+y2+z2=r2

練習(xí)題:

選擇題:

1.在空間直角坐標(biāo)系中,已知點(diǎn)P(x,y,z),給出下列4條敘述:①點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)的坐標(biāo)是(x,-y,z)②點(diǎn)P關(guān)于yOz平面的對(duì)稱點(diǎn)的坐標(biāo)是(x,-y,-z)③點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)的坐標(biāo)是(x,-y,z)④點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)是(-x,-y,-z)其中正確的個(gè)數(shù)是()

A.3B.2C.1D.0

2.若已知A(1,1,1),B(-3,-3,-3),則線段AB的長(zhǎng)為()

A.43

B.23

C.42

D.32

3.已知A(1,2,3),B(3,3,m),C(0,-1,0),D(2,―1,―1),則()

A.|AB|>|CD|

B.|AB|<|CD|C.|AB|≤|CD|

D.|AB|≥|CD|

4.設(shè)A(3,3,1),B(1,0,5),C(0,1,0),AB的中點(diǎn)M,則|CM|?()

A.5

B.2

C.3

D.4

高一數(shù)學(xué)知識(shí)點(diǎn)梳理

《圓與方程》知識(shí)點(diǎn)整理

一、標(biāo)準(zhǔn)方程

?x?a?2??y?b??r 22

1.求標(biāo)準(zhǔn)方程的方法——關(guān)鍵是求出圓心?a,b?和半徑r

①待定系數(shù):往往已知圓上三點(diǎn)坐標(biāo),例如教材P119例2 ②利用平面幾何性質(zhì)

往往涉及到直線與圓的位置關(guān)系,特別是:相切和相交 相切:利用到圓心與切點(diǎn)的連線垂直直線

相交:利用到點(diǎn)到直線的距離公式及垂徑定理

2.特殊位置的圓的標(biāo)準(zhǔn)方程設(shè)法(無(wú)需記,關(guān)鍵能理解) 條件 方程形式 圓心在原點(diǎn) x?y?r?r?0? 222過(guò)原點(diǎn) ?x?a???y?b??a2?b2?a2?b2?0? 圓心在x軸上 ?x?a??y?r22222?r

?r?0? ?0? 圓心在y軸上 x??y?b??r222

圓心在x軸上且過(guò)原點(diǎn) ?x?a??y?a222?a?0?

?b?0?

2圓心在y軸上且過(guò)原點(diǎn) x??y?b??b2222與x軸相切 ?x?a???y?b??b

222?b?0? ?a?0? 與y軸相切 ?x?a???y?b??a

與兩坐標(biāo)軸都相切 ?x?a???y?b??a

二、一般方程

x?y?Dx?Ey?F?0?D?E?4F?0? 22222222?a?b?0?

1.Ax?By?Cxy?Dx?Ey?F?0表示圓方程則??

?A=B≠0?A=B≠0

??

C=0???C=0

??D2+E2-4AF>022

?DEF?????>0 ?+ ?-4??AAA?????

2.求圓的一般方程一般可采用待定系數(shù)法:如教材P122例r4 3.D2+E2-4F>0??捎脕?lái)求有關(guān)參數(shù)的范圍 三、點(diǎn)與圓的位置關(guān)系

1.判斷方法:點(diǎn)到圓心的距離d與半徑r的大小關(guān)系

dr?點(diǎn)在圓外

2.涉及最值:

(1)圓外一點(diǎn)B,圓上一動(dòng)點(diǎn)P,討論P(yáng)B的最值

PBPB

=BN=BC-r =BM=BC+r

min

max

(2)圓內(nèi)一點(diǎn)A,圓上一動(dòng)點(diǎn)P,討論P(yáng)A的最值

Pmin= Pm

ax

A=A=

rr C C

=

思考:過(guò)此A點(diǎn)作最短的弦?(此弦垂直AC) 四、直線與圓的位置關(guān)系

1.判斷方法(d為圓心到直線的距離)

(1)相離?沒(méi)有公共點(diǎn)??<0?d>r

(2)相切?只有一個(gè)公共點(diǎn)??=0?d=r

(3)相交?有兩個(gè)公共點(diǎn)??>0?d這一知識(shí)點(diǎn)可以出如此題型:告訴你直線與圓相交讓你求有關(guān)參數(shù)的范圍. 2.直線與圓相切 (1)知識(shí)要點(diǎn) ①基本圖形

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)相關(guān)文章

高一數(shù)學(xué)知識(shí)點(diǎn)重點(diǎn)總結(jié)歸納

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

高一數(shù)學(xué)知識(shí)點(diǎn)歸納重要

數(shù)學(xué)高一知識(shí)點(diǎn)總結(jié)

高一數(shù)學(xué)知識(shí)點(diǎn)小歸納

高一數(shù)學(xué)必備知識(shí)點(diǎn)

高一數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)

高一數(shù)學(xué)有用必考知識(shí)點(diǎn)歸納

高中數(shù)學(xué)必修一三角函數(shù)知識(shí)點(diǎn)總結(jié)

高一數(shù)學(xué)學(xué)習(xí)過(guò)來(lái)人經(jīng)驗(yàn)分享

最新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高一數(shù)學(xué)怎么學(xué)?首先應(yīng)做好課前的物質(zhì)準(zhǔn)備和精神準(zhǔn)備,以使得上課時(shí)不至于出現(xiàn)書(shū)、本等物丟三落四的現(xiàn)象;今天小編在這給大家整理了高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié),接下來(lái)隨著小編一起來(lái)看看吧!高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)圓的方程1
推薦度:
點(diǎn)擊下載文檔文檔為doc格式
474750