初三部編版數(shù)學知識點
不渴望能夠一躍千里,只希望每天能夠前進一步。每一門科目都有自己的學習方法,但其實都是萬變不離其中的,數(shù)學其實和語文英語一樣,也是要記、要背、要練的。下面是小編給大家整理的一些初三數(shù)學的知識點,希望對大家有所幫助。
九年級下冊數(shù)學知識點總結(jié)
【旋轉(zhuǎn)變換】
1.概念:在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動叫做旋轉(zhuǎn)。
說明:(1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的;(2)旋轉(zhuǎn)過程中旋轉(zhuǎn)中心始終保持不動.(3)旋轉(zhuǎn)過程中旋轉(zhuǎn)的方向是相同的.(4)旋轉(zhuǎn)過程靜止時,圖形上一個點的旋轉(zhuǎn)角度是一樣的.⑤旋轉(zhuǎn)不改變圖形的大小和形狀.
2.性質(zhì):(1)對應點到旋轉(zhuǎn)中心的距離相等;
(2)對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;
(3)旋轉(zhuǎn)前、后的圖形全等.
3.旋轉(zhuǎn)作圖的步驟和方法:(1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;(2)找出圖形的關(guān)鍵點;(3)將圖形的關(guān)鍵點和旋轉(zhuǎn)中心連接起來,然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點的對應點;(4)按原圖形順次連接這些對應點,所得到的圖形就是旋轉(zhuǎn)后的圖形.
說明:在旋轉(zhuǎn)作圖時,一對對應點與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角.
【圓周角】
1、定義:頂點在圓上,角的兩邊都與圓相交的角。(兩條件缺一不可)
2、定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半。
3、推論:1)在同圓或等圓中,相等的圓周角所對的弧相等。
2)直徑(半圓)所對的圓周角是直角;900的圓周角所對的弦為直徑。(①常見輔助線:有直徑可構(gòu)成直角,有900圓周角可構(gòu)成直徑;②找圓心的方法:作兩個900圓周角所對兩弦交點)
4、圓內(nèi)接四邊形的性質(zhì)定理:圓內(nèi)接四邊形的對角互補。(任意一個外角等于它的內(nèi)對角)
補充:1、兩條平行弦所夾的弧相等。
2、圓的兩條弦1)在圓外相交時,所夾角等于它所對的兩條弧度數(shù)差的一半。2)在圓內(nèi)相交時,所夾的角等于它所夾兩條弧度數(shù)和的一半。
3、同弧所對的(在弧的同側(cè))圓內(nèi)部角其次是圓周角,最小的是圓外角。
初三年級數(shù)學圓的知識點整理
1.在一個平面內(nèi),線段OA繞它固定的一個端點O旋轉(zhuǎn)一周,另一個端點A所形成的圖形叫做圓。固定的端點O叫做圓心,線段OA叫做半徑。
2.連接圓上任意兩點的線段叫做弦,經(jīng)過圓心的弦叫做直徑。
3.圓上任意兩點間的部分叫作圓弧,簡稱弧。圓的任意一條直徑的兩個端點把圓分成兩條弧,每一條弧都叫做半圓。能夠重合的兩個圓叫做等圓。在同圓或等圓中,能夠互相重合的弧叫做等弧。
4.圓是軸對稱圖形,任何一條直徑所在直線都是它的對稱軸。
5.垂直于弦的直徑平分弦,并且平分弦所對的兩條弧。
6.平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。
7.我們把頂點在圓心的角叫做圓心角。
8.在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。
9.在同圓或等圓中,如果兩條弧相等,那么它們所對的圓心角相等,所對的弦相等。
10.在同圓或等圓中,如果兩條弦相等,那么它們所對的圓心角相等,所對的弧相等。
11.頂點在圓上,并且兩邊都與圓相交的角叫做圓周角。
12.在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半。
13.半圓(或半徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑。
14.如果一個多邊形的所有頂點都在同一個圓上,這個多邊形叫做圓內(nèi)接多邊形,這個圓叫做這個多邊形的外接圓。
15.在同圓或等圓中,如果兩個圓周角相等,他們所對的弧一定相等。
16.圓內(nèi)接四邊形的對角互補。
17.點P在圓外——d>r點P在圓上——d=r點P在圓內(nèi)——d
18.不在同一直線上的三個點確定一個圓。
19.經(jīng)過三角形的三個頂點可以做一個圓,這個圓叫做三角形的外接圓,外接圓的圓心是三角形三條邊垂直平分線的交點,叫做這個三角形的外心。
20.直線和圓有兩個公共點,這時我們說這條直線和圓相交,這條直線叫做圓的割線。
21.直線和圓只有一個公共點,這時我們說這條直線和圓相切,這條直線叫做圓的切線,這個點叫做切點。
22.直線和圓沒有公共點,這時我們說這條直線和圓相離。
23.直線L和○O—d
直線L和○O相離——d>r
24.經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。
25.圓的切線垂直于過切點的半徑。
26.經(jīng)過圓外一點作圓的切線,這點和切點之間的線段的長,叫做這點到圓的切線長。
27.從圓外一點可以引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。
28.與三角形各邊都相切的圓叫做三角形的內(nèi)切圓,內(nèi)切圓的圓心是三角形三條角平分線的交點,叫做三角形的內(nèi)心。
29.如果兩個圓沒有公共點,那么就說這兩個圓相離,(分外離和內(nèi)含)如果兩個圓只有一個公共點,那么就說這兩個圓相切,(分外切和內(nèi)切)。如果這兩個圓有兩個公共點,那么就說這兩個圓相交。
30.兩圓圓心的距離叫做圓心距。
31.我們把一個正多邊形的外接圓的圓心叫做這個正多邊形的中心,外接圓的半徑叫做正多邊形的半徑,正多邊形每一邊所對的圓心角叫做正多邊形的中心角,中心到正多邊形的一邊的距離叫做正多邊形的邊心距。
32.在半徑是R的圓中,因為360°圓心角所對的弧長就是圓周長C=2πR,所以n°的圓心角所對的弧長為
nπR
L=——
180
33.由組成圓心角的兩條半徑和圓心角所對的弧所圍成的圖形叫做扇形
34.在半徑是R的圓中,因為360°的圓心角所對的扇形的面積就是圓面積S=πR2nπR2
S扇形=——
360
35.我們把連接圓錐頂點和底面圓周上任意一點的線段叫做圓錐的母線。
初三年級下學期數(shù)學知識點
知識點一、平面直角坐標系
1,平面直角坐標系
在平面內(nèi)畫兩條互相垂直且有公共原點的數(shù)軸,就組成了平面直角坐標系。
其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸的交點O(即公共的原點)叫做直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。
為了便于描述坐標平面內(nèi)點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點,不屬于任何象限。
2、點的坐標的概念
點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在后,中間有“,”分開,橫、縱坐標的位置不能顛倒。平面內(nèi)點的坐標是有序?qū)崝?shù)對,當時,(a,b)和(b,a)是兩個不同點的坐標。
知識點二、不同位置的點的坐標的特征
1、各象限內(nèi)點的坐標的特征
點P(x,y)在第一象限
點P(x,y)在第二象限
點P(x,y)在第三象限
點P(x,y)在第四象限
2、坐標軸上的點的特征
點P(x,y)在x軸上,x為任意實數(shù)
點P(x,y)在y軸上,y為任意實數(shù)
點P(x,y)既在x軸上,又在y軸上x,y同時為零,即點P坐標為(0,0)
3、兩條坐標軸夾角平分線上點的坐標的特征
點P(x,y)在第一、三象限夾角平分線上x與y相等
點P(x,y)在第二、四象限夾角平分線上x與y互為相反數(shù)
4、和坐標軸平行的直線上點的坐標的特征
位于平行于x軸的直線上的各點的縱坐標相同。
位于平行于y軸的直線上的各點的橫坐標相同。
5、關(guān)于x軸、y軸或遠點對稱的點的坐標的特征
點P與點p’關(guān)于x軸對稱橫坐標相等,縱坐標互為相反數(shù)
點P與點p’關(guān)于y軸對稱縱坐標相等,橫坐標互為相反數(shù)
點P與點p’關(guān)于原點對稱橫、縱坐標均互為相反數(shù)
6、點到坐標軸及原點的距離
點P(x,y)到坐標軸及原點的距離:
(1)點P(x,y)到x軸的距離等于
(2)點P(x,y)到y(tǒng)軸的距離等于
(3)點P(x,y)到原點的距離等于
【二次函數(shù)的圖像與性質(zhì)】
二次函數(shù)的概念:一般地,形如ax^2+bx+c=0的函數(shù),叫做二次函數(shù)。
這里需要強調(diào):和一元二次方程類似,二次項系數(shù)a≠0,而b,c可以為零.二次函數(shù)的定義域是全體實數(shù).
二次函數(shù)圖像與性質(zhì)口訣
二次函數(shù)拋物線,圖象對稱是關(guān)鍵;
開口、頂點和交點,它們確定圖象限;
開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關(guān)聯(lián);頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標最重要,一般式配方它就現(xiàn),橫標即為對稱軸,縱標函數(shù)最值見。若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。
初三部編版數(shù)學知識點相關(guān)文章:
初三部編版數(shù)學知識點
上一篇:初中三年級數(shù)學知識點
下一篇:初三數(shù)學上冊的知識點