魯教版初三數(shù)學(xué)知識(shí)點(diǎn)
失敗乃成功之母,重復(fù)是學(xué)習(xí)之母。學(xué)習(xí),需要不斷的重復(fù)重復(fù),重復(fù)學(xué)過的知識(shí),加深印象,其實(shí)任何科目的學(xué)習(xí)方法都是不斷重復(fù)學(xué)習(xí)。下面是小編給大家整理的初三數(shù)學(xué)知識(shí)點(diǎn),希望對(duì)大家有所幫助。
初三年級(jí)下學(xué)期數(shù)學(xué)知識(shí)點(diǎn)歸納
【篇一:反比例函數(shù)】
形如y=k/x(k為常數(shù)且k≠0,x≠0,y≠0)的函數(shù),叫做反比例函數(shù)。
自變量x的取值范圍是不等于0的一切實(shí)數(shù)。
反比例函數(shù)圖像性質(zhì):
反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對(duì)稱。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。
當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)(即y隨x的增大而減小)
當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)(即y隨x的增大而增大)
由于反比例函數(shù)的自變量和因變量都不能為0,所以圖像只能無限向坐標(biāo)軸靠近,無法和坐標(biāo)軸相交。
1.過反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。
2.對(duì)于雙曲線y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/x(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)
【篇二:二次函數(shù)】
知識(shí)點(diǎn)一、平面直角坐標(biāo)系
1,平面直角坐標(biāo)系
在平面內(nèi)畫兩條互相垂直且有公共原點(diǎn)的數(shù)軸,就組成了平面直角坐標(biāo)系。
其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸的交點(diǎn)O(即公共的原點(diǎn))叫做直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。
為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(diǎn),不屬于任何象限。
2、點(diǎn)的坐標(biāo)的概念
點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),當(dāng)時(shí),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。
知識(shí)點(diǎn)二、不同位置的點(diǎn)的坐標(biāo)的特征
1、各象限內(nèi)點(diǎn)的坐標(biāo)的特征
點(diǎn)P(x,y)在第一象限
點(diǎn)P(x,y)在第二象限
點(diǎn)P(x,y)在第三象限
點(diǎn)P(x,y)在第四象限
2、坐標(biāo)軸上的點(diǎn)的特征
點(diǎn)P(x,y)在x軸上,x為任意實(shí)數(shù)
點(diǎn)P(x,y)在y軸上,y為任意實(shí)數(shù)
點(diǎn)P(x,y)既在x軸上,又在y軸上x,y同時(shí)為零,即點(diǎn)P坐標(biāo)為(0,0)
3、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征
點(diǎn)P(x,y)在第一、三象限夾角平分線上x與y相等
點(diǎn)P(x,y)在第二、四象限夾角平分線上x與y互為相反數(shù)
4、和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征
位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。
位于平行于y軸的直線上的各點(diǎn)的橫坐標(biāo)相同。
5、關(guān)于x軸、y軸或遠(yuǎn)點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特征
點(diǎn)P與點(diǎn)p’關(guān)于x軸對(duì)稱橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù)
點(diǎn)P與點(diǎn)p’關(guān)于y軸對(duì)稱縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù)
點(diǎn)P與點(diǎn)p’關(guān)于原點(diǎn)對(duì)稱橫、縱坐標(biāo)均互為相反數(shù)
6、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離
點(diǎn)P(x,y)到坐標(biāo)軸及原點(diǎn)的距離:
(1)點(diǎn)P(x,y)到x軸的距離等于
(2)點(diǎn)P(x,y)到y(tǒng)軸的距離等于
(3)點(diǎn)P(x,y)到原點(diǎn)的距離等于
初三數(shù)學(xué)知識(shí)點(diǎn)整理
軸對(duì)稱知識(shí)點(diǎn)
1.如果一個(gè)圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形;這條直線叫做對(duì)稱軸。
2.軸對(duì)稱圖形的對(duì)稱軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。
3.角平分線上的點(diǎn)到角兩邊距離相等。
4.線段垂直平分線上的任意一點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等。
5.與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。
6.軸對(duì)稱圖形上對(duì)應(yīng)線段相等、對(duì)應(yīng)角相等。
7.畫一圖形關(guān)于某條直線的軸對(duì)稱圖形的步驟:找到關(guān)鍵點(diǎn),畫出關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn),按照原圖順序依次連接各點(diǎn)。
8.點(diǎn)(x,y)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為(x,-y)
點(diǎn)(x,y)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為(-x,y)
點(diǎn)(x,y)關(guān)于原點(diǎn)軸對(duì)稱的點(diǎn)的坐標(biāo)為(-x,-y)
9.等腰三角形的性質(zhì):等腰三角形的兩個(gè)底角相等,(等邊對(duì)等角)
等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡(jiǎn)稱為三線合一。
10.等腰三角形的判定:等角對(duì)等邊。
11.等邊三角形的三個(gè)內(nèi)角相等,等于60,
12.等邊三角形的判定:三個(gè)角都相等的三角形是等腰三角形。
有一個(gè)角是60的等腰三角形是等邊三角形
有兩個(gè)角是60的三角形是等邊三角形。
13.直角三角形中,30角所對(duì)的直角邊等于斜邊的一半。
不等式
1.掌握不等式的基本性質(zhì),并會(huì)靈活運(yùn)用:
(1)不等式的兩邊加上(或減去)同一個(gè)整式,不等號(hào)的方向不變,即:如果a>b,那么a+c>b+c,a-c>b-c。
(2)不等式的兩邊都乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變,即:如果a>b,并且c>0,那么ac>bc。
(3)不等式的兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變,即:如果a>b,并且c<0,那么ac
2.比較大?。?a、b分別表示兩個(gè)實(shí)數(shù)或整式)
一般地:
如果a>b,那么a-b是正數(shù);反過來,如果a-b是正數(shù),那么a>b;
如果a=b,那么a-b等于0;反過來,如果a-b等于0,那么a=b;
如果a
即:a>b<===>a-b>0;a=b<===>a-b=0;aa-b<0。
3.不等式的解集:能使不等式成立的未知數(shù)的值,叫做不等式的解;一個(gè)不等式的所有解,組成這個(gè)不等式的解集;求不等式的解集的過程,叫做解不等式。
4.不等式的解集在數(shù)軸上的表示:用數(shù)軸表示不等式的解集時(shí),要確定邊界和方向:①邊界:有等號(hào)的是實(shí)心圓圈,無等號(hào)的是空心圓圈;②方向:大向右,小向左。
九年級(jí)上冊(cè)數(shù)學(xué)復(fù)習(xí)資料
知識(shí)點(diǎn)1:一元二次方程的基本概念
1、一元二次方程3x2+5x-2=0的常數(shù)項(xiàng)是-2。
2、一元二次方程3x2+4x-2=0的一次項(xiàng)系數(shù)為4,常數(shù)項(xiàng)是-2。
3、一元二次方程3x2-5x-7=0的二次項(xiàng)系數(shù)為3,常數(shù)項(xiàng)是-7。
4、把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0。
知識(shí)點(diǎn)2:直角坐標(biāo)系與點(diǎn)的位置
1、直角坐標(biāo)系中,點(diǎn)A(3,0)在y軸上。
2、直角坐標(biāo)系中,x軸上的任意點(diǎn)的橫坐標(biāo)為0。
3、直角坐標(biāo)系中,點(diǎn)A(1,1)在第一象限。
4、直角坐標(biāo)系中,點(diǎn)A(-2,3)在第四象限。
5、直角坐標(biāo)系中,點(diǎn)A(-2,1)在第二象限。
知識(shí)點(diǎn)3:已知自變量的值求函數(shù)值
1、當(dāng)x=2時(shí),函數(shù)y=的值為1。
2、當(dāng)x=3時(shí),函數(shù)y=的值為1。
3、當(dāng)x=-1時(shí),函數(shù)y=的值為1。
知識(shí)點(diǎn)4:基本函數(shù)的概念及性質(zhì)
1、函數(shù)y=-8x是一次函數(shù)。
2、函數(shù)y=4x+1是正比例函數(shù)。
3、函數(shù)是反比例函數(shù)。
4、拋物線y=-3(x-2)2-5的開口向下。
5、拋物線y=4(x-3)2-10的對(duì)稱軸是x=3。
6、拋物線的頂點(diǎn)坐標(biāo)是(1,2)。
7、反比例函數(shù)的圖象在第一、三象限。
知識(shí)點(diǎn)5:數(shù)據(jù)的平均數(shù)中位數(shù)與眾數(shù)
1、數(shù)據(jù)13,10,12,8,7的平均數(shù)是10。
2、數(shù)據(jù)3,4,2,4,4的眾數(shù)是4。
3、數(shù)據(jù)1,2,3,4,5的中位數(shù)是3。
初三數(shù)學(xué)知識(shí)點(diǎn)魯教版相關(guān)文章:
★ 初三數(shù)學(xué)知識(shí)點(diǎn)整理
★ 初三數(shù)學(xué)知識(shí)點(diǎn)考點(diǎn)歸納總結(jié)
★ 初三數(shù)學(xué)知識(shí)點(diǎn)歸納
★ 初三數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
★ 初三數(shù)學(xué)知識(shí)點(diǎn)上冊(cè)總結(jié)歸納
★ 初中數(shù)學(xué)知識(shí)點(diǎn)整理:
★ 初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
★ 最新初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)大全