初三數(shù)學重點知識點歸納
學習從來無捷徑,循序漸進登高峰。如果說學習一定有捷徑,那只能是勤奮,因為努力永遠不會騙人。學習需要勤奮,做任何事情都需要勤奮。下面是小編給大家整理的初三數(shù)學知識點,希望對大家有所幫助。
初三年級下學期數(shù)學知識點歸納
反比例函數(shù)
形如y=k/x(k為常數(shù)且k≠0,x≠0,y≠0)的函數(shù),叫做反比例函數(shù)。
自變量x的取值范圍是不等于0的一切實數(shù)。
反比例函數(shù)圖像性質:
反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關于原點對稱。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
當K>0時,反比例函數(shù)圖像經過一,三象限,是減函數(shù)(即y隨x的增大而減小)
當K<0時,反比例函數(shù)圖像經過二,四象限,是增函數(shù)(即y隨x的增大而增大)
由于反比例函數(shù)的自變量和因變量都不能為0,所以圖像只能無限向坐標軸靠近,無法和坐標軸相交。
1.過反比例函數(shù)圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。
2.對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/x(x±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)
初三年級數(shù)學知識點歸納
旋轉
一.知識框架
二.知識概念
1.旋轉:在平面內,將一個圖形繞一個圖形按某個方向轉動一個角度,這樣的運動叫做圖形的旋轉。這個定點叫做旋轉中心,轉動的角度叫做旋轉角。(圖形的旋轉是圖形上的每一點在平面上繞著某個固定點旋轉固定角度的位置移動,其中對應點到旋轉中心的距離相等,對應線段的長度、對應角的大小相等,旋轉前后圖形的大小和形狀沒有改變。)
2.旋轉對稱中心:把一個圖形繞著一個定點旋轉一個角度后,與初始圖形重合,這種圖形叫做旋轉對稱圖形,這個定點叫做旋轉對稱中心,旋轉的角度叫做旋轉角(旋轉角小于0°,大于360°)。
3.中心對稱圖形與中心對稱:
中心對稱圖形:如果把一個圖形繞著某一點旋轉180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形。
中心對稱:如果把一個圖形繞著某一點旋轉180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱。
4.中心對稱的性質:
關于中心對稱的兩個圖形是全等形。
關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分。
關于中心對稱的兩個圖形,對應線段平行(或者在同一直線上)且相等。
本章內容通過讓學生經歷觀察、操作等過程了解旋轉的概念,探索旋轉的性質,進一步發(fā)展空間觀察,培養(yǎng)幾何思維和審美意識,在實際問題中體驗數(shù)學的快樂,激發(fā)對學習學習。
初三數(shù)學復習知識點
軸對稱知識點
1.如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
3.角平分線上的點到角兩邊距離相等。
4.線段垂直平分線上的任意一點到線段兩個端點的距離相等。
5.與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
6.軸對稱圖形上對應線段相等、對應角相等。
7.畫一圖形關于某條直線的軸對稱圖形的步驟:找到關鍵點,畫出關鍵點的對應點,按照原圖順序依次連接各點。
8.點(x,y)關于x軸對稱的點的坐標為(x,-y)
點(x,y)關于y軸對稱的點的坐標為(-x,y)
點(x,y)關于原點軸對稱的點的坐標為(-x,-y)
9.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)
等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為三線合一。
10.等腰三角形的判定:等角對等邊。
11.等邊三角形的三個內角相等,等于60,
12.等邊三角形的判定:三個角都相等的三角形是等腰三角形。
有一個角是60的等腰三角形是等邊三角形
有兩個角是60的三角形是等邊三角形。
13.直角三角形中,30角所對的直角邊等于斜邊的一半。
不等式
1.掌握不等式的基本性質,并會靈活運用:
(1)不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:如果a>b,那么a+c>b+c,a-c>b-c。
(2)不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變,即:如果a>b,并且c>0,那么ac>bc。
(3)不等式的兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變,即:如果a>b,并且c<0,那么ac
2.比較大小:(a、b分別表示兩個實數(shù)或整式)
一般地:
如果a>b,那么a-b是正數(shù);反過來,如果a-b是正數(shù),那么a>b;
如果a=b,那么a-b等于0;反過來,如果a-b等于0,那么a=b;
如果a
即:a>b<===>a-b>0;a=b<===>a-b=0;aa-b<0。
3.不等式的解集:能使不等式成立的未知數(shù)的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式。
4.不等式的解集在數(shù)軸上的表示:用數(shù)軸表示不等式的解集時,要確定邊界和方向:①邊界:有等號的是實心圓圈,無等號的是空心圓圈;②方向:大向右,小向左。
初三數(shù)學重點知識點歸納相關文章: