九年級數學考試知識點總結
偉大的成績和辛勤勞動是成正比例的,有一分勞動就有一分收獲,積累,從少到多,奇跡就可以創(chuàng)造出來。學習也是一樣的,需要積累,從少變多。下面是小編給大家整理的一些九年級數學的知識點,希望對大家有所幫助。
九年級下冊數學知識點歸納
圓
★重點★①圓的重要性質;②直線與圓、圓與圓的位置關系;③與圓有關的角的定理;④與圓有關的比例線段定理。
☆內容提要☆
一、圓的基本性質
1.圓的定義(兩種)
2.有關概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。
3.“三點定圓”定理
4.垂徑定理及其推論
5.“等對等”定理及其推論
6.與圓有關的角:⑴圓心角定義(等對等定理)
⑵圓周角定義(圓周角定理,與圓心角的關系)
⑶弦切角定義(弦切角定理)
二、直線和圓的位置關系
1.切線的性質(重點)
2.切線的判定定理(重點)
3.切線長定理
三、圓換圓的位置關系
1.五種位置關系及判定與性質:(重點:相切)
2.相切(交)兩圓連心線的性質定理
3.兩圓的公切線:⑴定義⑵性質
四、與圓有關的比例線段
1.相交弦定理
2.切割線定理
五、與和正多邊形
1.圓的內接、外切多邊形(三角形、四邊形)
2.三角形的外接圓、內切圓及性質
3.圓的外切四邊形、內接四邊形的性質
4.正多邊形及計算
中心角:初中數學復習提綱
內角的一半:初中數學復習提綱(右圖)
(解Rt△OAM可求出相關元素,初中數學復習提綱、初中數學復習提綱等)
六、一組計算公式
1.圓周長公式
2.圓面積公式
3.扇形面積公式
4.弧長公式
5.弓形面積的計算方法
6.圓柱、圓錐的側面展開圖及相關計算
七、點的軌跡
六條基本軌跡
八、有關作圖
1.作三角形的外接圓、內切圓
2.平分已知弧
3.作已知兩線段的比例中項
4.等分圓周:4、8;6、3等分
九、重要輔助線
1.作半徑
2.見弦往往作弦心距
3.見直徑往往作直徑上的圓周角
4.切點圓心莫忘連
5.兩圓相切公切線(連心線)
6.兩圓相交公共弦
初三下冊數學知識點總結2021
半徑與弦長計算,弦心距來中間站。圓上若有一切線,切點圓心半徑連。
切線長度的計算,勾股定理最方便。要想證明是切線,半徑垂線仔細辨。
是直徑,成半圓,想成直角徑連弦?;∮兄悬c圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點連。弦切角邊切線弦,同弧對角等找完。
要想作個外接圓,各邊作出中垂線。還要作個內接圓,內角平分線夢圓。
如果遇到相交圓,不要忘作公共弦。內外相切的兩圓,經過切點公切線。
若是添上連心線,切點肯定在上面。要作等角添個圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。假如圖形較分散,對稱旋轉去實驗。
基本作圖很關鍵,平時掌握要熟練。解題還要多心眼,經??偨Y方法顯。
切勿盲目亂添線,方法靈活應多變。分析綜合方法選,困難再多也會減。
虛心勤學加苦練,成績上升成直線。
一、該記的記,該背的背,不要以為理解了就行
有的同學認為,數學不像英語、史地,要背單詞、背年代、背地名,數學靠的是智慧、技巧和推理。我說你只講對了一半。數學同樣也離不開記憶。試想一下,小學的加、減、乘、除運算要不是背熟了“乘法九九表”,你能順利地進行運算嗎?盡管你理解了乘法是相同加數的和的運算,但你在做9.9時用九個9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同樣,是運用大家熟記的法則做出來的。同時,數學中還有大量的規(guī)定需要記憶,比如規(guī)定(a≠0)等等。因此,我覺得數學更像游戲,它有許多游戲規(guī)則(即數學中的定義、法則、公式、定理等),誰記住了這些游戲規(guī)則,誰就能順利地做游戲;誰違反了這些游戲規(guī)則,誰就被判錯,罰下。因此,數學的定義、法則、公式、定理等一定要記熟,有些能背誦,朗朗上口。比如大家熟悉的“整式乘法三個公式”,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學敲一敲警鐘,如果背不出這三個公式,將會對今后的學習造成很大的麻煩,因為今后的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。
對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。打一個比方,數學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數學的定義、法則、公式、定理就很難解數學題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數學題,甚至是解數學難題中得心應手。
二、幾個重要的數學思想
1、“方程”的思想
數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次是不等量關系。最常見的等量關系就是“方程”。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度.時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學就已經接觸過簡易方程,而初一則比較系統(tǒng)地學習解一元一次方程,并總結出解一元一次方程的五個步驟。如果學會并掌握了這五個步驟,任何一個一元一次方程都能順利地解出來。初二、初三我們還將學習解一元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學習指數方程、對數方程、線性方程組、、參數方程、極坐標方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恒,化學中的化學平衡式,現實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好其它形式的方程。
所謂的“方程”思想就是對于數學問題,特別是現實當中碰到的未知量和已知量的錯綜復雜的關系,善于用“方程”的觀點去構建有關的方程,進而用解方程的方法去解決它。
2、“數形結合”的思想
大千世界,“數”與“形”無處不在。任何事物,剝去它的質的方面,只剩下形狀和大小這兩個屬性,就交給數學去研究了。初中數學的兩個分支棗-代數和幾何,代數是研究“數”的,幾何是研究“形”的。但是,研究代數要借助“形”,研究幾何要借助“數”,“數形結合”是一種趨勢,越學下去,“數”與“形”越密不可分,到了高中,就出現了專門用代數方法去研究幾何問題的一門課,叫做“解析幾何”。在初三,建立平面直角坐標系后,研究函數的問題就離不開圖象了。往往借助圖象能使問題明朗化,比較容易找到問題的關鍵所在,從而解決問題。在今后的數學學習中,要重視“數形結合”的思維訓練,任何一道題,只要與“形”沾得上一點邊,就應該根據題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強,容易找出切入點,對解題大有益處。嘗到甜頭的人慢慢會養(yǎng)成一種“數形結合”的好習慣。
九年級數學考試知識點總結相關文章:
九年級數學考試知識點總結
上一篇:九年級數學下冊知識點梳理
下一篇:九年級下冊數學知識點