湘教版九年級(jí)上冊(cè)數(shù)學(xué)電子課本
湘教版九年級(jí)上冊(cè)數(shù)學(xué)電子課本免費(fèi)下載
數(shù)學(xué)是人類對(duì)事物的抽象結(jié)構(gòu)與模式進(jìn)行嚴(yán)格描述的一種通用手段,那么關(guān)于九年級(jí)上冊(cè)數(shù)學(xué)電子課本怎么學(xué)習(xí)呢?以下是小編準(zhǔn)備的一些湘教版九年級(jí)上冊(cè)數(shù)學(xué)電子課本,僅供參考。
湘教版九年級(jí)上冊(cè)數(shù)學(xué)電子課本
查看完整版可微信搜索公眾號(hào)【5068教學(xué)資料】,關(guān)注后對(duì)話框回復(fù)【9】獲取九年級(jí)語(yǔ)文、九年級(jí)數(shù)學(xué)、九年級(jí)英語(yǔ)電子課本資源。
九年級(jí)上冊(cè)數(shù)學(xué)重要知識(shí)考點(diǎn)
1.二次根式:一般地,式子 叫做二次根式.
注意:(1)若 這個(gè)條件不成立,則 不是二次根式;
(2) 是一個(gè)重要的非負(fù)數(shù),即; ≥0.
2.重要公式:(1) ,(2) ;
3.積的算術(shù)平方根:
積的算術(shù)平方根等于積中各因式的算術(shù)平方根的積;
4.二次根式的乘法法則: .
5.二次根式比較大小的方法:
(1)利用近似值比大小;
(2)把二次根式的系數(shù)移入二次根號(hào)內(nèi),然后比大小;
(3)分別平方,然后比大小.
6.商的算術(shù)平方根: ,
商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根.
7.二次根式的除法法則:
(1) ;(2) ;
(3)分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎?
8.最簡(jiǎn)二次根式:
(1)滿足下列兩個(gè)條件的二次根式,叫做最簡(jiǎn)二次根式,① 被開方數(shù)的因數(shù)是整數(shù),因式是整式,② 被開方數(shù)中不含能開的盡的因數(shù)或因式;
(2)最簡(jiǎn)二次根式中,被開方數(shù)不能含有小數(shù)、分?jǐn)?shù),字母因式次數(shù)低于2,且不含分母;
(3)化簡(jiǎn)二次根式時(shí),往往需要把被開方數(shù)先分解因數(shù)或分解因式;
(4)二次根式計(jì)算的最后結(jié)果必須化為最簡(jiǎn)二次根式.
10.同類二次根式:幾個(gè)二次根式化成最簡(jiǎn)二次根式后,如果被開方數(shù)相同,這幾個(gè)二次根式叫做同類二次根式.
12.二次根式的混合運(yùn)算:
(1)二次根式的混合運(yùn)算包括加、減、乘、除、乘方、開方六種代數(shù)運(yùn)算,以前學(xué)過的,在有理數(shù)范圍內(nèi)的一切公式和運(yùn)算律在二次根式的混合運(yùn)算中都適用;
(2)二次根式的運(yùn)算一般要先把二次根式進(jìn)行適當(dāng)化簡(jiǎn),例如:化為同類二次根式才能合并;除法運(yùn)算有時(shí)轉(zhuǎn)化為分母有理化或約分更為簡(jiǎn)便;使用乘法公式等.
第22章 一元二次方程
1. 一元二次方程的一般形式: a≠0時(shí),ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關(guān)問題時(shí),多數(shù)習(xí)題要先化為一般形式,目的是確定一般形式中的a、 b、 c; 其中a 、 b,、c可能是具體數(shù),也可能是含待定字母或特定式子的代數(shù)式.
2. 一元二次方程的解法: 一元二次方程的四種解法要求靈活運(yùn)用, 其中直接開平方法雖然簡(jiǎn)單,但是適用范圍較小;公式法雖然適用范圍大,但計(jì)算較繁,易發(fā)生計(jì)算錯(cuò)誤;因式分解法適用范圍較大,且計(jì)算簡(jiǎn)便,是首選方法;配方法使用較少.
3. 一元二次方程根的判別式: 當(dāng)ax2+bx+c=0 (a≠0)時(shí),Δ=b2-4ac 叫一元二次方程根的判別式.請(qǐng)注意以下等價(jià)命題:
Δ>0 <=> 有兩個(gè)不等的實(shí)根; Δ=0 <=> 有兩個(gè)相等的實(shí)根;Δ<0 <=> 無實(shí)根;
4.平均增長(zhǎng)率問題--------應(yīng)用題的類型題之一 (設(shè)增長(zhǎng)率為x):
(1) 第一年為 a , 第二年為a(1+x) , 第三年為a(1+x)2.
(2)常利用以下相等關(guān)系列方程: 第三年=第三年 或 第一年+第二年+第三年=總和.
第23章 旋轉(zhuǎn)
1、概念:
把一個(gè)圖形繞著某一點(diǎn)O轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換叫做旋轉(zhuǎn),點(diǎn)O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角.
旋轉(zhuǎn)三要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方面、旋轉(zhuǎn)角
2、旋轉(zhuǎn)的性質(zhì):
(1) 旋轉(zhuǎn)前后的兩個(gè)圖形是全等形;
(2) 兩個(gè)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等
(3) 兩個(gè)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角
3、中心對(duì)稱:
把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱,這個(gè)點(diǎn)叫做對(duì)稱中心.
這兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做關(guān)于中心的對(duì)稱點(diǎn).
4、中心對(duì)稱的性質(zhì):
(1)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)所連線段都經(jīng)過對(duì)稱中心,而且被對(duì)稱中心所平分.
(2)關(guān)于中心對(duì)稱的兩個(gè)圖形是全等圖形.
5、中心對(duì)稱圖形:
把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)就是它的對(duì)稱中心.
6、坐標(biāo)系中的中心對(duì)稱
兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱時(shí),它們的坐標(biāo)符號(hào)相反,
即點(diǎn)P(x,y)關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)P′(-x,-y).
第24章 圓
1、(要求深刻理解、熟練運(yùn)用)
1.垂徑定理及推論:
如圖:有五個(gè)元素,“知二可推三”;需記憶其中四個(gè)定理,
即“垂徑定理”“中徑定理” “弧徑定理”“中垂定理”.
幾何表達(dá)式舉例:
∵ CD過圓心
∵CD⊥AB
3.“角、弦、弧、距”定理:(同圓或等圓中)
“等角對(duì)等弦”; “等弦對(duì)等角”;
“等角對(duì)等弧”; “等弧對(duì)等角”;
“等弧對(duì)等弦”;“等弦對(duì)等(優(yōu),劣)弧”;
“等弦對(duì)等弦心距”;“等弦心距對(duì)等弦”.
幾何表達(dá)式舉例:
(1) ∵∠AOB=∠COD
∴ AB = CD
(2) ∵ AB = CD
∴∠AOB=∠COD
(3)……………
4.圓周角定理及推論:
(1)圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的一半;
(2)一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半;(如圖)
(3)“等弧對(duì)等角”“等角對(duì)等弧”;
(4)“直徑對(duì)直角”“直角對(duì)直徑”;(如圖)
(5)如三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形.(如圖)
(1) (2)(3) (4)幾何表達(dá)式舉例:
(1) ∵∠ACB= ∠AOB
∴ ……………
(2) ∵ AB是直徑
∴ ∠ACB=90°
(3) ∵ ∠ACB=90°
∴ AB是直徑
(4) ∵ CD=AD=BD
∴ ΔABC是RtΔ
5.圓內(nèi)接四邊形性質(zhì)定理:
圓內(nèi)接四邊形的對(duì)角互補(bǔ),
并且任何一個(gè)外角都等于它的內(nèi)對(duì)角.
幾何表達(dá)式舉例:
∵ ABCD是圓內(nèi)接四邊形
∴ ∠CDE =∠ABC
∠C+∠A =180°
6.切線的判定與性質(zhì)定理:
如圖:有三個(gè)元素,“知二可推一”;
需記憶其中四個(gè)定理.
(1)經(jīng)過半徑的外端并且垂直于這條
半徑的直線是圓的切線;
(2)圓的切線垂直于經(jīng)過切點(diǎn)的半徑;
幾何表達(dá)式舉例:
(1) ∵OC是半徑
∵OC⊥AB
∴AB是切線
(2) ∵OC是半徑
∵AB是切線
∴OC⊥AB
9.相交弦定理及其推論:
(1)圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的乘積相等;
(2)如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段長(zhǎng)的比例中項(xiàng).
(1) (2)幾何表達(dá)式舉例:
(1) ∵PA?PB=PC?PD
∴………
(2) ∵AB是直徑
∵PC⊥AB
∴PC2=PA?PB
11.關(guān)于兩圓的性質(zhì)定理:
(1)相交兩圓的連心線垂直平分兩圓的公共弦;
(2)如果兩圓相切,那么切點(diǎn)一定在連心線上.
(1) (2)幾何表達(dá)式舉例:
(1) ∵O1,O2是圓心
∴O1O2垂直平分AB
(2) ∵⊙1 、⊙2相切
∴O1 、A、O2三點(diǎn)一線
12.正多邊形的有關(guān)計(jì)算:
(1)中心角an ,半徑RN ,邊心距rn ,
邊長(zhǎng)an ,內(nèi)角bn ,邊數(shù)n;
(2)有關(guān)計(jì)算在RtΔAOC中進(jìn)行.
公式舉例:
(1) an = ;
(2)
二 定理:
1.不在一直線上的三個(gè)點(diǎn)確定一個(gè)圓.
2.任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓.
3.正n邊形的半徑和邊心距把正n邊形分為2n個(gè)全等的直角三角形.
三 公式:
1.有關(guān)的計(jì)算:
(1)圓的周長(zhǎng)C=2πR;(2)弧長(zhǎng)L= ;(3)圓的面積S=πR2.
(4)扇形面積S扇形 = ;
(5)弓形面積S弓形 =扇形面積SAOB±ΔAOB的面積.(如圖)
2.圓柱與圓錐的側(cè)面展開圖:
(1)圓柱的側(cè)面積:S圓柱側(cè) =2πrh; (r:底面半徑;h:圓柱高)
(2)圓錐的側(cè)面積:S圓錐側(cè) = =πrR. (L=2πr,R是圓錐母線長(zhǎng);r是底面半徑)
四 常識(shí):
1. 圓是軸對(duì)稱和中心對(duì)稱圖形.
2. 圓心角的度數(shù)等于它所對(duì)弧的度數(shù).
3. 三角形的外心 ? 兩邊中垂線的交點(diǎn) ? 三角形的外接圓的圓心;
三角形的內(nèi)心 ? 兩內(nèi)角平分線的交點(diǎn) ? 三角形的內(nèi)切圓的圓心.
4. 直線與圓的位置關(guān)系:(其中d表示圓心到直線的距離;其中r表示圓的半徑)
直線與圓相交 ? dr.
5. 圓與圓的位置關(guān)系:(其中d表示圓心到圓心的距離,其中R、r表示兩個(gè)圓的半徑且R≥r)
兩圓外離 ? d>R+r; 兩圓外切 ? d=R+r; 兩圓相交 ? R-r
兩圓內(nèi)切 ? d=R-r; 兩圓內(nèi)含 ? d
6.證直線與圓相切,常利用:“已知交點(diǎn)連半徑證垂直”和“不知交點(diǎn)作垂直證半徑” 的方法加輔助線.
第25章 概率
1、 必然事件、不可能事件、隨機(jī)事件的區(qū)別
2、概率
一般地,在大量重復(fù)試驗(yàn)中,如果事件A發(fā)生的頻率 會(huì)穩(wěn)定在某個(gè)常數(shù)p附近,那么這個(gè)常數(shù)p就叫做事件A的概率(probability), 記作P(A)= p.
注意:(1)概率是隨機(jī)事件發(fā)生的可能性的大小的數(shù)量反映.
(2)概率是事件在大量重復(fù)試驗(yàn)中頻率逐漸穩(wěn)定到的值,即可以用大量重復(fù)試驗(yàn)中事件發(fā)生的頻率去估計(jì)得到事件發(fā)生的概率,但二者不能簡(jiǎn)單地等同.
3、求概率的方法
(1)用列舉法求概率(列表法、畫樹形圖法)
(2)用頻率估計(jì)概率:一大面,可用大量重復(fù)試驗(yàn)中事件發(fā)生頻率來估計(jì)事件發(fā)生的概率.另一方面,大量重復(fù)試驗(yàn)中事件發(fā)生的頻率穩(wěn)定在某個(gè)常數(shù)(事件發(fā)生的概率)附近,說明概率是個(gè)定值,而頻率隨不同試驗(yàn)次數(shù)而有所不同,是概率的近似值,二者不能簡(jiǎn)單地等同.
九年級(jí)數(shù)學(xué)學(xué)習(xí)方法
要重視教學(xué)過程,要積極體驗(yàn)知識(shí)產(chǎn)生、發(fā)展的過程,要把知識(shí)的來龍去脈搞清楚,認(rèn)識(shí)知識(shí)發(fā)生的過程,理解公式、定理、法則的推導(dǎo)過程,改變死記硬背的方法,這樣我們就能從知識(shí)形成、發(fā)展過程當(dāng)中,理解到學(xué)會(huì)它的樂趣;在解決問題的過程中,體會(huì)到成功的喜悅。
習(xí)題課
要掌握“聽一遍不如看一遍,看一遍不如做一遍,做一遍不如講一遍,講一遍不如辯一辯”的訣竅。除了聽老師講,看老師做以外,要自己多做習(xí)題,而且要把自己的體會(huì)主動(dòng)、大膽地講給大家聽,遇到問題要和同學(xué)、老師辯一辯,堅(jiān)持真理,改正錯(cuò)誤。在聽課時(shí)要注意老師展示的解題思維過程,要多思考、多探究、多嘗試,發(fā)現(xiàn)創(chuàng)造性的證法及解法,學(xué)會(huì)“小題大做”和“大題小做”的解題方法,即對(duì)選擇題、填空題一類的客觀題要認(rèn)真對(duì)待絕不粗心大意,就像對(duì)待大題目一樣,做到下筆如有神;對(duì)綜合題這樣的大題目不妨把“大”拆“小”,以“退”為“進(jìn)”,也就是把一個(gè)比較復(fù)雜的問題,拆成或退為最簡(jiǎn)單、最原始的問題,把這些小題、簡(jiǎn)單問題想通、想透,找出規(guī)律,然后再來一個(gè)飛躍,進(jìn)一步升華,就能湊成一個(gè)大題,即退中求進(jìn)了。如果有了這種分解、綜合的能力,加上有扎實(shí)的基本功還有什么題目難得倒我們。
復(fù)習(xí)課
在數(shù)學(xué)學(xué)習(xí)過程中,要有一個(gè)清醒的復(fù)習(xí)意識(shí),逐漸養(yǎng)成良好的復(fù)習(xí)習(xí)慣,從而逐步學(xué)會(huì)學(xué)習(xí)。數(shù)學(xué)復(fù)習(xí)應(yīng)是一個(gè)反思性學(xué)習(xí)過程。要反思對(duì)所學(xué)習(xí)的知識(shí)、技能有沒有達(dá)到課程所要求的程度;要反思學(xué)習(xí)中涉及到了哪些數(shù)學(xué)思想方法,這些數(shù)學(xué)思想方法是如何運(yùn)用的,運(yùn)用過程中有什么特點(diǎn);要反思基本問題(包括基本圖形、圖像等),典型問題有沒有真正弄懂弄通了,平時(shí)碰到的問題中有哪些問題可歸結(jié)為這些基本問題;要反思自己的錯(cuò)誤,找出產(chǎn)生錯(cuò)誤的原因,訂出改正的措施。在新學(xué)期大家準(zhǔn)備一本數(shù)學(xué)學(xué)習(xí)“病例卡”,把平時(shí)犯的錯(cuò)誤記下來,找出“病因”開出“處方”,并且經(jīng)常拿出來看看、想想錯(cuò)在哪里,為什么會(huì)錯(cuò),怎么改正,通過你的努力,到中考時(shí)你的數(shù)學(xué)就沒有什么“病例”了。并且數(shù)學(xué)復(fù)習(xí)應(yīng)在數(shù)學(xué)知識(shí)的運(yùn)用過程中進(jìn)行,通過運(yùn)用,達(dá)到深化理解、發(fā)展能力的目的,因此在新的.一年要在教師的指導(dǎo)下做一定數(shù)量的數(shù)學(xué)習(xí)題,做到舉一反三、熟練應(yīng)用,避免以“練”代“復(fù)”的題海戰(zhàn)術(shù)。
九年級(jí)上冊(cè)數(shù)學(xué)練習(xí)題
一、選擇題(每小題3分,共30分)
1、兩個(gè)直角三角形全等的條件是()
A、一銳角對(duì)應(yīng)相等B、兩銳角對(duì)應(yīng)相等C、一條邊對(duì)應(yīng)相等D、兩條邊對(duì)應(yīng)相等
2、如圖,由∠1=∠2,BC=DC,AC=EC,得△ABC≌△EDC的根據(jù)是()
A、SASB、ASAC、AASD、SSS
3、等腰三角形底邊長(zhǎng)為7,一腰上的中線把其周長(zhǎng)分成兩部分的差為3,則腰長(zhǎng)是()
A、4B、10C、4或10D、以上答案都不對(duì)
4、如圖,EA⊥AB,BC⊥AB,EA=AB=2BC,D為AB中點(diǎn),有以下結(jié)論:
(1)DE=AC;(2)DE⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE。其中結(jié)論正確的是()
A、(1),(3)B、(2),(3)C、(3),(4)D、(1),(2),(4)
5、如圖,△ABC中,∠ACB=90°,BA的垂直平分線交CB邊于D,若AB=10,AC=5,則圖中等于60°的角的個(gè)數(shù)為()
A、2B、3C、4D、5
(第2題圖)(第4題圖)(第5題圖)
6、設(shè)M表示直角三角形,N表示等腰三角形,P表示等邊三角形,Q表示等腰直角三角形,則下列四個(gè)圖中,能表示他們之間關(guān)系的是()
7、如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于點(diǎn)D,DE⊥AB,垂足為E,且AB=6cm,則△DEB的周長(zhǎng)為()
A、4cmB、6cmC、8cmD、10cm
8、如圖,△ABC中,AB=AC,點(diǎn)D在AC邊上,且BD=BC=AD,則∠A的度數(shù)為()
A、30°B、36°C、45°D、70°
9、如圖,已知AC平分∠PAQ,點(diǎn)B,B′分別在邊AP,AQ上,如果添加一個(gè)條件,即可推出AB=AB′,那么該條件不可以是()
A、BB′⊥ACB、BC=B′CC、∠ACB=∠ACB′D、∠ABC=∠AB′C
(第7題圖)(第8題圖)(第9題圖)(第10題圖)
10、如圖,△ABC中,AD⊥BC于D,BE⊥AC于E,AD與BE相交于F,若BF=AC,則ABC的大小是()
A、40°B、45°C、50°D、60°
二、填空題(每小題3分,共15分)
11、如果等腰三角形的一個(gè)底角是80°,那么頂角是度.
12、如圖,點(diǎn)F、C在線段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,則還須補(bǔ)充一個(gè)條件.
(第12題圖)(第13題圖)(第15題圖)
13、如圖,點(diǎn)D在AB上,點(diǎn)E在AC上,CD與BE相交于點(diǎn)O,且AD=AE,AB=AC。若∠B=20°,則∠C=°.
14、在△ABC中,AB=5cm,BC=6cm,BC邊上的中線AD=4cm,則∠ADC的度數(shù)是度.
15、如圖,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分線MN與AB交于D點(diǎn),則∠BCD的度數(shù)為.
三、解答題:(共75分,其中16、17題每題6分;18、19題每題7分;20、21題每題8分;22題10分,23題11分,24題12分)
16、已知:如圖,∠A=∠D=90°,AC=BD.
求證:OB=OC
17、已知:如圖,P、Q是△ABC邊BC上兩點(diǎn),且BP=PQ=QC=AP=AQ,求∠BAC的度數(shù).
18、已知:如圖,等腰梯形ABCD中,AD∥BC,AB=CD,點(diǎn)E為梯形外一點(diǎn),且AE=DE.求證:BE=CE.
19、已知D是Rt△ABC斜邊AC的中點(diǎn),DE⊥AC交BC于E,且∠EAB∶∠BAC=2∶5,求∠ACB的度數(shù).
20、已知:如圖,AB=AC,CE⊥AB于E,BD⊥AC于D,求證:BD=CE.
21、已知:如圖,在等邊三角形ABC的AC邊上取中點(diǎn)D,BC的延長(zhǎng)線上取一點(diǎn)E,使CE=CD.求證:BD=DE.
22、(10分)已知:如圖,在等邊三角形ABC中,D、E分別為BC、AC上的點(diǎn),且AE=CD,連結(jié)AD、BE交于點(diǎn)P,作BQ⊥AD,垂足為Q.求證:BP=2PQ.
23、(11分)閱讀下題及其證明
過程:已知:如圖,D是△ABC中BC邊上一點(diǎn),EB=EC,∠ABE=∠ACE,求證:∠BAE=∠CAE.
證明:在△AEB和△AEC中,
∴△AEB≌△AEC(第一步)
∴∠BAE=∠CAE(第二步)
問:上面證明過程是否正確?若正確,請(qǐng)寫出每一步推理根據(jù);
若不正確,請(qǐng)指出錯(cuò)在哪一步?并寫出你認(rèn)為正確的推理過程。
24、(12分)如圖1,點(diǎn)C為線段AB上一點(diǎn),△ACM,△CBN是等邊三角形,直線AN,MC交于點(diǎn)E,直線BM、CN交與F點(diǎn)。
(1)求證:AN=BM;(2)求證:△CEF為等邊三角形;(3)將△ACM繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)900,其他條件不變,在圖2中補(bǔ)出符合要求的圖形,并判斷第(1)、(2)兩小題的結(jié)論是否仍然成立(不要求證明)