六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學習啦>學習方法>初中學習方法>初三學習方法>九年級數(shù)學>

九年級新學期數(shù)學知識點

時間: 小恒0 分享

學會整合知識點。把需要學習的信息、掌握的知識分類,做成思維導圖或知識點卡片,會讓你的大腦、思維條理清醒,方便記憶、溫習、掌握。下面就是小編為大家整理的九年級新學期數(shù)學知識點,希望大家能夠喜歡。

九年級新學期數(shù)學知識點

1.代數(shù)式與有理式

用運算符號把數(shù)或表示數(shù)的字母連結而成的式子,叫做代數(shù)式。單獨的一個數(shù)或字母也是代數(shù)式。

整式和分式統(tǒng)稱為有理式。

2.整式和分式

含有加、減、乘、除、乘方運算的代數(shù)式叫做有理式。

沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。

有除法運算并且除式中含有字母的有理式叫做分式。

3.單項式與多項式

沒有加減運算的整式叫做單項式(數(shù)字與字母的積—包括單獨的一個數(shù)或字母)。

幾個單項式的和,叫做多項式。

說明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運算,把單項式、多項式區(qū)分開。②進行代數(shù)式分類時,是以所給的代數(shù)式為對象,而非以變形后的代數(shù)式為對象。劃分代數(shù)式類別時,是從外形來看。如=x,=│x│等。

4.系數(shù)與指數(shù)

區(qū)別與聯(lián)系:①從位置上看;②從表示的意義上看;

5.同類項及其合并

條件:①字母相同;②相同字母的指數(shù)相同

合并依據(jù):乘法分配律

6.根式

表示方根的代數(shù)式叫做根式。

含有關于字母開方運算的代數(shù)式叫做無理式。

注意:①從外形上判斷;②區(qū)別:是根式,但不是無理式(是無理數(shù))。

7.算術平方根

⑴正數(shù)a的正的'平方根([a≥0—與“平方根”的區(qū)別]);

⑵算術平方根與絕對值

①聯(lián)系:都是非負數(shù),=│a│

②區(qū)別:│a│中,a為一切實數(shù);中,a為非負數(shù)。

8.同類二次根式、最簡二次根式、分母有理化

化為最簡二次根式以后,被開方數(shù)相同的二次根式叫做同類二次根式。

滿足條件:①被開方數(shù)的因數(shù)是整數(shù),因式是整式;②被開方數(shù)中不含有開得盡方的因數(shù)或因式。

把分母中的根號劃去叫做分母有理化。

9.指數(shù)

⑴(—冪,乘方運算)。

①a>0時,>0;②a<0時,>0(n是偶數(shù)),<0(n是奇數(shù))。

⑵零指數(shù):=1(a≠0)。

負整指數(shù):=1/(a≠0,p是正整數(shù))。

九年級數(shù)學知識點梳理

一、圓的定義

1、以定點為圓心,定長為半徑的點組成的圖形。

2、在同一平面內,到一個定點的距離都相等的點組成的圖形。

二、圓的各元素

1、半徑:圓上一點與圓心的連線段。

2、直徑:連接圓上兩點有經過圓心的線段。

3、弦:連接圓上兩點線段(直徑也是弦)。

4、弧:圓上兩點之間的曲線部分。半圓周也是弧。

(1)劣?。盒∮诎雸A周的弧。

(2)優(yōu)?。捍笥诎雸A周的弧。

5、圓心角:以圓心為頂點,半徑為角的邊。

6、圓周角:頂點在圓周上,圓周角的兩邊是弦。

7、弦心距:圓心到弦的垂線段的長。

三、圓的基本性質

1、圓的對稱性

(1)圓是圖形,它的對稱軸是直徑所在的直線。

(2)圓是中心對稱圖形,它的對稱中心是圓心。

(3)圓是對稱圖形。

2、垂徑定理。

(1)垂直于弦的直徑平分這條弦,且平分這條弦所對的兩條弧。

(2)推論:

平分弦(非直徑)的直徑,垂直于弦且平分弦所對的兩條弧。

平分弧的直徑,垂直平分弧所對的弦。

3、圓心角的度數(shù)等于它所對弧的度數(shù)。圓周角的度數(shù)等于它所對弧度數(shù)的一半。

(1)同弧所對的圓周角相等。

(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。

4、在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其余四對量也分別相等。

5、夾在平行線間的兩條弧相等。

6、設⊙O的半徑為r,OP=d。

7、(1)過兩點的圓的圓心一定在兩點間連線段的中垂線上。

(2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。

(直角的外心就是斜邊的中點。)

8、直線與圓的位置關系。d表示圓心到直線的距離,r表示圓的半徑。

直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;

直線與圓沒有交點,直線與圓相離。

9、中,A(x1,y1)、B(x2,y2)。

10、圓的切線判定。

(1)d=r時,直線是圓的切線。

切點不明確:畫垂直,證半徑。

(2)經過半徑的外端且與半徑垂直的直線是圓的切線。

切點明確:連半徑,證垂直。

11、圓的切線的性質(補充)。

(1)經過切點的直徑一定垂直于切線。

(2)經過切點并且垂直于這條切線的直線一定經過圓心。

12、切線長定理。

(1)切線長:從圓外一點引圓的兩條切線,切點與這點之間連線段的長叫這個點到圓的切線長。

(2)切線長定理。

∵PA、PB切⊙O于點A、B

∴PA=PB,∠1=∠2。

13、內切圓及有關計算。

(1)內切圓的圓心是三個內角平分線的交點,它到三邊的距離相等。

(2)如圖,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三邊于點D、E、F。

求:AD、BE、CF的長。

分析:設AD=x,則AD=AF=x,BD=BE=5-x,CE=CF=7-x.

可得方程:5-x+7-x=6,解得x=3

(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。

求內切圓的半徑r。

分析:先證得正方形ODCE,

得CD=CE=r

AD=AF=b-r,BE=BF=a-r

b-r+a-r=c

14、(1)弦切角:角的頂點在圓周上,角的一邊是圓的切線,另一邊是圓的弦。

BC切⊙O于點B,AB為弦,∠ABC叫弦切角,∠ABC=∠D。

(2)相交弦定理。

圓的兩條弦AB與CD相交于點P,則PA?PB=PC?PD。

(3)切割線定理。

如圖,PA切⊙O于點A,PBC是⊙O的割線,則PA2=PB?PC。

(4)推論:如圖,PAB、PCD是⊙O的割線,則PA?PB=PC?PD。

15、圓與圓的位置關系。

(1)外離:d>r1+r2,交點有0個;

外切:d=r1+r2,交點有1個;

相交:r1-r2

內切:d=r1-r2,交點有1個;

內含:0≤d

(2)性質。

相交兩圓的連心線垂直平分公共弦。

相切兩圓的連心線必經過切點。

16、圓中有關量的計算。

(1)弧長有L表示,圓心角用n表示,圓的半徑用R表示。

(2)扇形的面積用S表示。

(3)圓錐的側面展開圖是扇形。

r為底面圓的半徑,a為母線長。

九年級數(shù)學知識點匯總

一元一次方程:

①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是

1、這樣的方程叫一元一次方程。

②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結果仍是等式。

解一元一次方程的步驟:

去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。

二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。

二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。

解二元一次方程組的方法:代入消元法/加減消元法。

2、不等式與不等式組

不等式:

①用符號”=“號連接的式子叫不等式。

②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。

③不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。

④不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。

不等式的解集:

①能使不等式成立的未知數(shù)的值,叫做不等式的解。

②一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。

③求不等式解集的過程叫做解不等式。

一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。

一元一次不等式組:

①關于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

③求不等式組解集的過程,叫做解不等式組。

3、函數(shù)

變量:因變量,自變量。在用圖象表示變量之間的關系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。

一次函數(shù):

①若兩個變量X,Y間的關系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。

②當B=0時,稱Y是X的正比例函數(shù)。

一次函數(shù)的圖象:

①把一個函數(shù)的自變量X與對應的因變量Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數(shù)的圖象。

②正比例函數(shù)Y=KX的圖象是經過原點的一條直線。

③在一次函數(shù)中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。

④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。

空間與圖形

圖形的認識:

1、點,線,面

點,線,面:

①圖形是由點,線,面構成的。

②面與面相交得線,線與線相交得點。

③點動成線,線動成面,面動成體。

展開與折疊:

①在棱柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,棱柱的所有側棱長相等,棱柱的上下底面的形狀相同,側面的形狀都是長方體。

②N棱柱就是底面圖形有N條邊的棱柱。

截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

視圖:主視圖,左視圖,俯視圖。

多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

弧,扇形:

①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。

②圓可以分割成若干個扇形。

線:

①線段有兩個端點。

②將線段向一個方向無限延長就形成了射線。射線只有一個端點。

③將線段的兩端無限延長就形成了直線。直線沒有端點。

④經過兩點有且只有一條直線。

比較長短:

①兩點之間的所有連線中,線段最短。

②兩點之間線段的長度,叫做這兩點之間的距離。

角的度量與表示:

①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

②一度的1/60是一分,一分的1/60是一秒。

角的比較:

①角也可以看成是由一條射線繞著他的端點旋轉而成的。

②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉,當他又和始邊重合時,所成的角叫做周角。

③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

平行:

①同一平面內,不相交的兩條直線叫做平行線。

②經過直線外一點,有且只有一條直線與這條直線平行。

③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。

垂直:

①如果兩條直線相交成直角,那么這兩條直線互相垂直。

②互相垂直的兩條直線的交點叫做垂足。

③平面內,過一點有且只有一條直線與已知直線垂直。

2、相交線與平行線

角:

①如果兩個角的和是直角,那么稱和兩個角互為余角;如果兩個角的和是平角,那么稱這兩個角互為補角。

②同角或等角的余角/補角相等。

③對頂角相等。

④同位角相等/內錯角相等/同旁內角互補,兩直線平行,反之亦然。

九年級數(shù)學知識點相關文章

蘇教版高三數(shù)學知識點總結

最有效的學習方法總結

蘇教版四年級數(shù)學期末復習知識點匯總

學習啦網站地圖

蘇教版四年級數(shù)學上冊知識點

高中數(shù)學會考試卷及答案

小學蘇教版三年級數(shù)學學習方法

中心學校工作報告總結范文精選

蘇教版九年級上學期歷史課堂作業(yè)本答案

語文作文教學計劃范文

713933