初中數學兩大復習策略與考試技巧
初中數學兩大復習策略與考試技巧
這個暑期過后,新一輪中考復習備考周期正式開始,對于數學的學習也不能放松哦,小編在這里整理了相關資料初中數學兩大復習策略與考試技巧,希望能幫助到您。
初中數學學習方法的兩大復習策略
1梳理策略
總結梳理,提煉方法。對于題型的總結梳理,應擺脫盲目的題海戰(zhàn)術,對重點習題進行歸類,找出解題規(guī)律,要關注解題的思路、方法、技巧。
如方案設計題型中有一類試題,不改變圖形面積把一個圖形剪拼成另一個指定圖形??偨Y發(fā)現,這類題有三種類型,一類是剪切線的條數不限制進行拼接;一類是剪切線的條數有限制進行拼接;一類是給出若干小圖形拼接成固定圖形。梳理了題型就可以進一步探索解題規(guī)律。
同時也可以換角度進行思考,如一個任意的三角形可以剪拼成平行四邊形或矩形,最少需幾條剪切線?聯想到任意四邊形可以剪拼成哪些特殊圖形,任意梯形可以剪拼成哪些特殊圖形等。做題時,要注重發(fā)現題與題之間的內在聯系,通過比較,發(fā)現規(guī)律,做到觸類旁通。
反思錯題,提升能力。在備考期間,要想降低錯誤率,除了進行及時修正、全面扎實復習之外,非常關鍵的一個環(huán)節(jié)就是反思錯題,具體做法是:將已復習過的內容進行“會診”,找到最薄弱部分,特別是對月考、模擬試卷出現的錯誤要進行認真分析,也可以將試卷進行重新剪貼、分類對比,從中發(fā)現自己復習中存在的共性問題。
正確分析問題產生的原因,例如,是計算馬虎,還是法則使用不當;是審題不仔細,還是對試題中已知條件或所求結論理解有誤;是解題思路不對,還是定理應用出錯等等,消除某個薄弱環(huán)節(jié)比做一百道題更重要。應把這些做錯的習題和不懂不會的習題當成再次鍛煉自己的機會,找到了問題產生的原因,也就找到了解題的最佳途徑。
事實上,如果考前及時發(fā)現問題,并且及時糾正,就會越快地提高數學能力。對其中那些反復出錯的問題可以考慮再做一遍,自己平時害怕的題、容易出錯的題要精做,以絕后患。并且要靜下心來,通過學習、回憶,而有所思,有所悟,便會有所發(fā)現、有所提高、有所創(chuàng)新,便能悟出道理、悟出規(guī)律。
2答題策略
首先,審題時注意力要集中,思維應直接指向試題,力爭做到眼到、心到、手到。審題時,應弄清已知條件、所求結論,同時在短時間內匯集有關概念、公式、定理,用綜合法、或分析法、或兩頭湊的方法,探索解題途徑。特別注意已知條件所設的陷阱,仔細審題,認真分析是否該分類討論,以免丟解。
其次,在答題順序上,應逐題進行解答。要正確迅速地完成選擇題和填空題,有效利用時間,為順利完成中檔題和壓軸題奠定基礎。在逐題進行解答時,遇到一時解不出的題應先放下(別忘了做記號,以免落題),把會解的題目都做完后,再回來把留下的疑難逐一解決。
第三,遇到平時沒見過的題目,不要慌,穩(wěn)定好情緒。題目貌似異常,其實都出自原本。要冷靜回想它與平時見過的題目、書本中的知識有哪些關聯。要相信自己的功底,多方尋找思路,便能豁然得釋。切忌對著題發(fā)呆不敢下手,有時動筆做一做或者畫一畫,就圖形進行相應地分析,也就做出來了。盡可能解答一步是一步,不放過多得一分的機會。
第四,解綜合題時,應步步為營,穩(wěn)扎穩(wěn)打,否則前面錯了,后面即使方法對了,也得分甚少。
最后,注意認真檢查,如感覺某題答錯了,不能盲目去改,要十分冷靜地重新審題,仔細研究,確定此時思路正確,再動筆去改,因為此時易把正確的改錯了,盡量減少失誤。
初三中考數學常用解題方法
(1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,余下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。
(5)圖解法:借助于符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,稱為分析法。
初中數學知識點總結
1.有理數:
(1)凡能寫成形式的數,都是有理數。正整數、0、負整數統(tǒng)稱整數;正分數、負分數統(tǒng)稱分數;整數和分數統(tǒng)稱有理數。注意:0即不是正數,也不是負數;—a不一定是負數,+a也不一定是正數;p不是有理數;
(2)有理數的分類:① ②
2.數軸:數軸是規(guī)定了原點、正方向、單位長度的一條直線。
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)相反數的和為0?a+b=0?a、b互為相反數。
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2)絕對值可表示為:或;絕對值的問題經常分類討論;
5.有理數比大?。?/p>
(1)正數的絕對值越大,這個數越大;
(2)正數永遠比0大,負數永遠比0小;
(3)正數大于一切負數;
(4)兩個負數比大小,絕對值大的反而小;
(5)數軸上的兩個數,右邊的數總比左邊的數大;
(6)大數—小數> 0,小數—大數< 0。
6.互為倒數:
乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那么的倒數是;若ab=1,a、b互為倒數;若ab=—1,a、b互為負倒數。
7.有理數加法法則:
(1)同號兩數相加,取相同的符號,并把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數。
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a;
(2)加法的結合律:(a+b)+c=a+(b+c)。
9.有理數減法法則:
減去一個數,等于加上這個數的相反數;即a—b=a+(—b)。
10.有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,并把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定。
11.有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac 。
12.有理數除法法則:
除以一個數等于乘以這個數的倒數;注意:零不能做除數,。
13.有理數乘方的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(—a)n=—an或(a —b)n=—(b—a)n,當n為正偶數時:(—a)n =an或(a—b)n=(b—a)n 。
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
15.科學記數法:
把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法。
16.近似數的精確位:
一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位。
17.有效數字:
從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字。
18.混合運算法則:
先乘方,后乘除,最后加減。
本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運算法則解決實際問題。
體驗數學發(fā)展的一個重要原因是生活實際的需要。激發(fā)學生學習數學的興趣,教師培養(yǎng)學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創(chuàng)設情境,充分體現學生學習的主體性地位。
初中數學兩大復習策略與考試技巧相關文章:
★ 怎樣復習初中數學