初中生數(shù)學(xué)學(xué)習(xí)方法
初中生數(shù)學(xué)學(xué)習(xí)方法精選
數(shù)學(xué)學(xué)習(xí)做完題目后一定要認(rèn)真總結(jié),做到舉一反三,這樣,以后遇到同一類(lèi)的問(wèn)題是就不會(huì)花費(fèi)太多的時(shí)間和精力了。下面給大家分享一些關(guān)于初中生數(shù)學(xué)學(xué)習(xí)方法精選,希望能夠?qū)Υ蠹矣兴鶐椭?/p>
初中生數(shù)學(xué)學(xué)習(xí)方法【篇1】
注意事項(xiàng)一:切勿思想松懈
剛剛經(jīng)歷了中考的學(xué)生,精神感覺(jué)疲憊,往往認(rèn)為高一可以放松一些,到高三突擊也來(lái)得及,但是高中數(shù)學(xué)內(nèi)容的深度和廣度是容不得輕視的,尤其是高中數(shù)學(xué)內(nèi)容之間存在很大的關(guān)聯(lián)性,任意一個(gè)方面的忽視都會(huì)為后期的學(xué)習(xí)帶來(lái)困難。
注意事項(xiàng)二:切勿產(chǎn)生依賴(lài)
很多同學(xué)進(jìn)入高中后仍然象初中階段一樣,有很強(qiáng)的依賴(lài)心理,如果沒(méi)有良好的學(xué)習(xí)習(xí)慣(制定計(jì)劃→課前預(yù)習(xí)→課后復(fù)習(xí)→作業(yè)練習(xí)→總結(jié)反思),只是單純完成老師安排的任務(wù),在高中學(xué)習(xí)中會(huì)處處被動(dòng)。
注意事項(xiàng)三:切忌學(xué)不得法
學(xué)生最常見(jiàn)的三種行為:背概念、趕作業(yè)、套題型。然而這些都是被動(dòng)型的學(xué)習(xí)方法。如果學(xué)生能夠主動(dòng)的進(jìn)行概念研究,同時(shí)形成一套科學(xué)的審題方法,嚴(yán)謹(jǐn)?shù)拇痤}習(xí)慣,學(xué)習(xí)效率必然會(huì)十分驚人。
注意事項(xiàng)四:切勿忽視基礎(chǔ)
忽視對(duì)基礎(chǔ)知識(shí)(概念、原理、公式)、基本技能、基本方法和基本思想的學(xué)習(xí)和訓(xùn)練,不追求理解知識(shí)的內(nèi)涵外延,僅一味追求所謂的難題,將很難取得理想的學(xué)習(xí)效果。
注意事項(xiàng)五:切勿輕視細(xì)節(jié)
高中考試中多數(shù)丟分,不是題目不會(huì)做,而是解題步驟不夠嚴(yán)謹(jǐn)導(dǎo)致的。
初中生數(shù)學(xué)學(xué)習(xí)方法【篇2】
方法一:直接法
所謂直接法,就是直接從題設(shè)的條件出發(fā),運(yùn)用有關(guān)的概念、定義、性質(zhì)、定理、法則和公式等知識(shí),通過(guò)嚴(yán)密的推理與計(jì)算來(lái)得出題目的結(jié)論,然后再對(duì)照題目所給的四個(gè)選項(xiàng)來(lái)“對(duì)號(hào)入座”.其基本策略是由因?qū)Ч?,直接求?
方法二:特例法
特例法的理論依據(jù)是:命題的一般性結(jié)論為真的先決條件是它的特殊情況為真,即普通性寓于特殊性之中,所謂特例法,就是用特殊值(特殊圖形、特殊位置)代替題設(shè)普遍條件,得出特殊結(jié)論,對(duì)各個(gè)選項(xiàng)進(jìn)行檢驗(yàn),從而作出正確的判斷.常用的特例有取特殊數(shù)值、特殊數(shù)列、特殊函數(shù)、特殊圖形、特殊角、特殊位置等.這種方法實(shí)際是一種“小題小做”的解題策略,對(duì)解答某些選擇題有時(shí)往往十分奏效.
注意:
在題設(shè)條件都成立的情況下,用特殊值(取得越簡(jiǎn)單越好)進(jìn)行探求,從而清晰、快捷地得到正確的答案,即通過(guò)對(duì)特殊情況的研究來(lái)判斷一般規(guī)律,是解答本類(lèi)選擇題的較佳策略.近幾年高考選擇題中可用或結(jié)合特例法來(lái)解答的約占30%.因此,特例法是求解選擇題的好招.
方法三:排除法
數(shù)學(xué)選擇題的解題本質(zhì)就是去偽存真,舍棄不符合題目要求的選項(xiàng),找到符合題意的正確結(jié)論.篩選法(又叫排除法)就是通過(guò)觀察分析或推理運(yùn)算各項(xiàng)提供的信息或通過(guò)特例,對(duì)于錯(cuò)誤的選項(xiàng),逐一剔除,從而獲得正確的結(jié)論.
注意:
排除法適應(yīng)于定性型或不易直接求解的選擇題.當(dāng)題目中的條件多于一個(gè)時(shí),先根據(jù)某些條件在選項(xiàng)中找出明顯與之矛盾的,予以否定,再根據(jù)另一些條件在縮小選項(xiàng)的范圍內(nèi)找出矛盾,這樣逐步篩選,直到得出正確的答案.它與特例法、圖解法等結(jié)合使用是解選擇題的常用方法,近幾年高考選擇題中占有很大的比重.
方法四:數(shù)形結(jié)合法
數(shù)形結(jié)合,其實(shí)質(zhì)是將抽象的數(shù)學(xué)語(yǔ)言與直觀的圖形結(jié)合起來(lái),使抽象思維與形象思維結(jié)合起來(lái),通過(guò)對(duì)圖形的處理,發(fā)揮直觀對(duì)抽象的支持作用,實(shí)現(xiàn)抽象概念與具體形象的聯(lián)系和轉(zhuǎn)化,化難為易,化抽象為直觀.
方法五:估算法
在選擇題中作準(zhǔn)確計(jì)算不易時(shí),可根據(jù)題干提供的信息,估算出結(jié)果的大致取值范圍,排除錯(cuò)誤的選項(xiàng).對(duì)于客觀性試題,合理的估算往往比盲目的準(zhǔn)確計(jì)算和嚴(yán)謹(jǐn)推理更為有效,可謂“一葉知秋”.
方法六:綜合法
當(dāng)單一的解題方法不能使試題迅速獲解時(shí),我們可以將多種方法融為一體,交叉使用,試題便能迎刃而解.根據(jù)題干提供的信息,不易找到解題思路時(shí),我們可以從選項(xiàng)里找解題靈感.
初中生數(shù)學(xué)學(xué)習(xí)方法【篇3】
1、先看專(zhuān)題一,整數(shù)指數(shù)冪的有關(guān)概念和運(yùn)算性質(zhì),以及一些常用公式,這公式不但在初中要求熟練掌握,高中的課程也是經(jīng)常要用到的。
2、二次函數(shù),二次方程不僅是初中重點(diǎn),也是難點(diǎn)。在高中還是要學(xué)的內(nèi)容,并且增加了一元二次不等式的解法,這個(gè)就要根據(jù)二次函數(shù)圖像來(lái)理解了!解不等式的時(shí)候就要從先解方程的根開(kāi)始,二次項(xiàng)系數(shù)大于0時(shí),有個(gè)口訣得記下:“大于號(hào)取兩邊,小于號(hào)取中間”。
3、因式分解的方法這個(gè)比較重要,高中也是經(jīng)常用的,比如證明函數(shù)的單調(diào)性,常在做差變形是需要因式分解,還有解一元多次方程的時(shí)候往往也先需要分解因式,之后才能求出方程的根。
4、判別式很重要,不僅能判斷二次方程的根有幾個(gè),大于零2個(gè)根;等于零1個(gè)根;小于零無(wú)根。而且還能判斷二次函數(shù)零點(diǎn)的情況,人教版必修一就會(huì)學(xué)到。集合里面有許多題也要用到。
初中生數(shù)學(xué)學(xué)習(xí)方法【篇4】
1.函數(shù)與方程思想
函數(shù)與方程的思想是中學(xué)數(shù)學(xué)最基本的思想。所謂函數(shù)的思想是指用運(yùn)動(dòng)變化的觀點(diǎn)去分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),再運(yùn)用函數(shù)的圖像與性質(zhì)去分析、解決相關(guān)的問(wèn)題。而所謂方程的思想是分析數(shù)學(xué)中的等量關(guān)系,去構(gòu)建方程或方程組,通過(guò)求解或利用方程的性質(zhì)去分析解決問(wèn)題。
2.數(shù)形結(jié)合思想
數(shù)與形在一定的條件下可以轉(zhuǎn)化。如某些代數(shù)問(wèn)題、三角問(wèn)題往往有幾何背景,可以借助幾何特征去解決相關(guān)的代數(shù)三角問(wèn)題;而某些幾何問(wèn)題也往往可以通過(guò)數(shù)量的結(jié)構(gòu)特征用代數(shù)的方法去解決。因此數(shù)形結(jié)合的思想對(duì)問(wèn)題的解決有舉足輕重的作用。
解題類(lèi)型
①“由形化數(shù)”:就是借助所給的圖形,仔細(xì)觀察研究,提示出圖形中蘊(yùn)含的數(shù)量關(guān)系,反映幾何圖形內(nèi)在的屬性。
②“由數(shù)化形” :就是根據(jù)題設(shè)條件正確繪制相應(yīng)的圖形,使圖形能充分反映出它們相應(yīng)的數(shù)量關(guān)系,提示出數(shù)與式的本質(zhì)特征。
③“數(shù)形轉(zhuǎn)換” :就是根據(jù)“數(shù)”與“形”既對(duì)立,又統(tǒng)一的特征,觀察圖形的形狀,分析數(shù)與式的結(jié)構(gòu),引起聯(lián)想,適時(shí)將它們相互轉(zhuǎn)換,化抽象為直觀并提示隱含的數(shù)量關(guān)系。
3.分類(lèi)討論思想
分類(lèi)討論的思想之所以重要,原因一是因?yàn)樗倪壿嬓暂^強(qiáng),原因二是因?yàn)樗闹R(shí)點(diǎn)的涵蓋比較廣,原因三是因?yàn)樗膳囵B(yǎng)學(xué)生的分析和解決問(wèn)題的能力。原因四是實(shí)際問(wèn)題中常常需要分類(lèi)討論各種可能性。
解決分類(lèi)討論問(wèn)題的關(guān)鍵是化整為零,在局部討論降低難度。
常見(jiàn)的類(lèi)型
類(lèi)型1:由數(shù)學(xué)概念引起的的討論,如實(shí)數(shù)、有理數(shù)、絕對(duì)值、點(diǎn)(直線、圓)與圓的位置關(guān)系等概念的分類(lèi)討論;
類(lèi)型2:由數(shù)學(xué)運(yùn)算引起的討論,如不等式兩邊同乘一個(gè)正數(shù)還是負(fù)數(shù)的問(wèn)題;
類(lèi)型3 :由性質(zhì)、定理、公式的限制條件引起的討論,如一元二次方程求根公式的應(yīng)用引起的討論;
類(lèi)型4:由圖形位置的不確定性引起的討論,如直角、銳角、鈍角三角形中的相關(guān)問(wèn)題引起的討論。
類(lèi)型5:由某些字母系數(shù)對(duì)方程的影響造成的分類(lèi)討論,如二次函數(shù)中字母系數(shù)對(duì)圖象的影響,二次項(xiàng)系數(shù)對(duì)圖象開(kāi)口方向的影響,一次項(xiàng)系數(shù)對(duì)頂點(diǎn)坐標(biāo)的影響,常數(shù)項(xiàng)對(duì)截距的影響等。
分類(lèi)討論思想是對(duì)數(shù)學(xué)對(duì)象進(jìn)行分類(lèi)尋求解答的一種思想方法,其作用在于克服思維的片面性,全面考慮問(wèn)題。分類(lèi)的原則:分類(lèi)不重不漏。
初中生數(shù)學(xué)學(xué)習(xí)方法【篇5】
1.轉(zhuǎn)化與化歸思想
轉(zhuǎn)化與化歸是中學(xué)數(shù)學(xué)最基本的數(shù)學(xué)思想之一,是一切數(shù)學(xué)思想方法的核心。數(shù)形結(jié)合的思想體現(xiàn)了數(shù)與形的轉(zhuǎn)化;函數(shù)與方程的思想體現(xiàn)了函數(shù)、方程、不等式之間的相互轉(zhuǎn)化;分類(lèi)討論思想體現(xiàn)了局部與整體的相互轉(zhuǎn)化,所以以上三種思想也是轉(zhuǎn)化與化歸思想的具體呈現(xiàn)。
轉(zhuǎn)化包括等價(jià)轉(zhuǎn)化和非等價(jià)轉(zhuǎn)化,等價(jià)轉(zhuǎn)化要求在轉(zhuǎn)化的過(guò)程中前因和后果是充分的也是必要的;不等價(jià)轉(zhuǎn)化就只有一種情況,因此結(jié)論要注意檢驗(yàn)、調(diào)整和補(bǔ)充。轉(zhuǎn)化的原則是將不熟悉和難解的問(wèn)題轉(zhuǎn)為熟知的、易解的和已經(jīng)解決的問(wèn)題,將抽象的問(wèn)題轉(zhuǎn)為具體的和直觀的問(wèn)題;將復(fù)雜的轉(zhuǎn)為簡(jiǎn)單的問(wèn)題;將一般的轉(zhuǎn)為特殊的問(wèn)題;將實(shí)際的問(wèn)題轉(zhuǎn)為數(shù)學(xué)的問(wèn)題等等使問(wèn)題易于解決?!〕R?jiàn)的轉(zhuǎn)化方法
①直接轉(zhuǎn)化法:把原問(wèn)題直接轉(zhuǎn)化為基本定理、基本公式或基本圖形問(wèn)題;
②換元法:運(yùn)用“換元”把式子轉(zhuǎn)化為有理式或使整式降冪等,把較復(fù)雜的函數(shù)、方程、不等式問(wèn)題轉(zhuǎn)化為易于解決的基本問(wèn)題;
③數(shù)形結(jié)合法:研究原問(wèn)題中數(shù)量關(guān)系(解析式)與空間形式(圖形)關(guān)系,通過(guò)互相變換獲得轉(zhuǎn)化途徑;
④等價(jià)轉(zhuǎn)化法:把原問(wèn)題轉(zhuǎn)化為一個(gè)易于解決的等價(jià)命題,達(dá)到化歸的目的;
⑤特殊化方法:把原問(wèn)題的形式向特殊化形式轉(zhuǎn)化,并證明特殊化后的問(wèn)題,使結(jié)論適合原問(wèn)題;
⑥構(gòu)造法:“構(gòu)造”一個(gè)合適的數(shù)學(xué)模型,把問(wèn)題變?yōu)橐子诮鉀Q的問(wèn)題;
⑦坐標(biāo)法:以坐標(biāo)系為工具,用計(jì)算方法解決幾何問(wèn)題也是轉(zhuǎn)化方法的一個(gè)重要途徑。
2.特殊與一般思想
用這種思想解選擇題有時(shí)特別有效,這是因?yàn)橐粋€(gè)命題在普遍意義上成立時(shí),在其特殊情況下也必然成立,根據(jù)這一點(diǎn),同學(xué)們可以直接確定選擇題中的正確選項(xiàng)。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣有用。
3.極限思想
極限思想解決問(wèn)題的一般步驟為:①對(duì)于所求的未知量,先設(shè)法構(gòu)思一個(gè)與它有關(guān)的變量;②確認(rèn)這變量通過(guò)無(wú)限過(guò)程的結(jié)果就是所求的未知量;③構(gòu)造函數(shù)(數(shù)列)并利用極限計(jì)算法則得出結(jié)果或利用圖形的極限位置直接計(jì)算結(jié)果。