六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 各學(xué)科學(xué)習(xí)方法 > 數(shù)學(xué)學(xué)習(xí)方法 > 初中數(shù)學(xué)必背知識(shí)點(diǎn)總結(jié)歸納

初中數(shù)學(xué)必背知識(shí)點(diǎn)總結(jié)歸納

時(shí)間: 夢(mèng)熒0 分享

初中數(shù)學(xué)必背知識(shí)點(diǎn)總結(jié)歸納(一覽)

知識(shí)點(diǎn)就是一些課本中??嫉膬?nèi)容,或者考試經(jīng)常出題的地方。為了幫助大家更高效的學(xué)習(xí),以下是小編整理的一些初中數(shù)學(xué)必背知識(shí)點(diǎn)總結(jié)歸納,歡迎閱讀參考。

初中數(shù)學(xué)必背知識(shí)點(diǎn)總結(jié)歸納

初中數(shù)學(xué)知識(shí)點(diǎn)歸納

方差是實(shí)際值與期望值之差平方的期望值,而標(biāo)準(zhǔn)差是方差算術(shù)平方根。 在實(shí)際計(jì)算中,我們用以下公式計(jì)算方差。

方差是各個(gè)數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),即s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2],其中,x_表示樣本的平均數(shù),n表示樣本的數(shù)量,xn表示個(gè)體,而s^2就表示方差。

而當(dāng)用(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]作為樣本X的方差的估計(jì)時(shí),發(fā)現(xiàn)其數(shù)學(xué)期望并不是X的方差,而是X方差的(n-1)/n倍,[1/(n-1)][(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]的數(shù)學(xué)期望才是X的方差,用它作為X的方差的估計(jì)具有“無(wú)偏性”,所以我們總是用[1/(n-1)]∑(xi-X~)^2來(lái)估計(jì)X的方差,并且把它叫做“樣本方差”。

方差,通俗點(diǎn)講,就是和中心偏離的程度!用來(lái)衡量一批數(shù)據(jù)的波動(dòng)大小(即這批數(shù)據(jù)偏離平均數(shù)的大小)并把它叫做這組數(shù)據(jù)的方差。記作S。 在樣本容量相同的情況下,方差越大,說(shuō)明數(shù)據(jù)的波動(dòng)越大,越不穩(wěn)定。

定義 設(shè)X是一個(gè)隨機(jī)變量,若E{[X-E(X)]^2}存在,則稱E{[X-E(X)]^2}為X的方差,記為D(X),Var(X)或DX。

即D(X)=E{[X-E(X)]^2}稱為方差,而σ(X)=D(X)^0.5(與X有相同的量綱)稱為標(biāo)準(zhǔn)差(或均方差)。即用來(lái)衡量一組數(shù)據(jù)的離散程度的統(tǒng)計(jì)量。

方差刻畫了隨機(jī)變量的取值對(duì)于其數(shù)學(xué)期望的離散程度。(標(biāo)準(zhǔn)差.方差越大,離散程度越大。否則,反之)

若X的取值比較集中,則方差D(X)較小

若X的取值比較分散,則方差D(X)較大。

因此,D(X)是刻畫X取值分散程度的一個(gè)量,它是衡量X取值分散程度的一個(gè)尺度。

計(jì)算 由定義知,方差是隨機(jī)變量 X 的函數(shù)

g(X)=∑[X-E(X)]^2 pi

數(shù)學(xué)期望。即:

由方差的定義可以得到以下常用計(jì)算公式:

D(X)=∑xipi-E(x)

D(X)=∑(xipi+E(X)pi-2xipiE(X))

=∑xipi+∑E(X)pi-2E(X)∑xipi

=∑xipi+E(X)-2E(X)

=∑xipi-E(x)

方差其實(shí)就是標(biāo)準(zhǔn)差的平方。

關(guān)于初中數(shù)學(xué)常見知識(shí)點(diǎn)總結(jié)

一、平行四邊形的定義、性質(zhì)及判定

1、兩組對(duì)邊平行的四邊形是平行四邊形。

2、性質(zhì):

(1)平行四邊形的對(duì)邊相等且平行

(2)平行四邊形的對(duì)角相等,鄰角互補(bǔ)

(3)平行四邊形的對(duì)角線互相平分

3、判定:

(1)兩組對(duì)邊分別平行的四邊形是平行四邊形

(2)兩組對(duì)邊分別相等的四邊形是平行四邊形

(3)一組對(duì)邊平行且相等的四邊形是平行四邊形

(4)兩組對(duì)角分別相等的四邊形是平行四邊形

(5)對(duì)角線互相平分的四邊形是平行四邊形

4、對(duì)稱性:平行四邊形是中心對(duì)稱圖形

二、矩形的定義、性質(zhì)及判定

1、定義:有一個(gè)角是直角的平行四邊形叫做矩形

2、性質(zhì):矩形的四個(gè)角都是直角,矩形的對(duì)角線相等

3、判定:

(1)有一個(gè)角是直角的平行四邊形叫做矩形

(2)有三個(gè)角是直角的四邊形是矩形

(3)兩條對(duì)角線相等的平行四邊形是矩形

4、對(duì)稱性:矩形是軸對(duì)稱圖形也是中心對(duì)稱圖形。

三、菱形的定義、性質(zhì)及判定

1、定義:有一組鄰邊相等的平行四邊形叫做菱形

(1)菱形的四條邊都相等

(2)菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角

(3)菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形

(4)菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半

2、s菱=爭(zhēng)6(n、6分別為對(duì)角線長(zhǎng))

3、判定:

(1)有一組鄰邊相等的平行四邊形叫做菱形

(2)四條邊都相等的四邊形是菱形

(3)對(duì)角線互相垂直的平行四邊形是菱形

4、對(duì)稱性:菱形是軸對(duì)稱圖形也是中心對(duì)稱圖形

初中數(shù)學(xué)必考的知識(shí)點(diǎn)總結(jié)

1、不在同一直線上的三點(diǎn)確定一個(gè)圓。

2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

②弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧

③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

推論2圓的兩條平行弦所夾的弧相等

3、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

4、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

7、同圓或等圓的半徑相等

8、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

9、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。

11、定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

12、①直線L和⊙O相交d

②直線L和⊙O相切d=r

③直線L和⊙O相離d>r

13、切線的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線

14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑

15、推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)

16、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心

17、切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

18、圓的外切四邊形的兩組對(duì)邊的和相等,外角等于內(nèi)對(duì)角

19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

20、①兩圓外離d>R+r

②兩圓外切d=R+r

③兩圓相交R-rr)

④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)

1884535