六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 各學(xué)科學(xué)習(xí)方法 > 數(shù)學(xué)學(xué)習(xí)方法 > 2023年高中數(shù)學(xué)知識(shí)點(diǎn)及公式內(nèi)容

2023年高中數(shù)學(xué)知識(shí)點(diǎn)及公式內(nèi)容

時(shí)間: 夢熒0 分享

2023年高中數(shù)學(xué)知識(shí)點(diǎn)及公式內(nèi)容總結(jié)

有很多的同學(xué)是非常的想知道,高中數(shù)學(xué)知識(shí)點(diǎn)有哪些,數(shù)學(xué)公式是什么,我們高考時(shí)又該怎么應(yīng)對呢?以下是小編整理的一些2023年高中數(shù)學(xué)知識(shí)點(diǎn)及公式內(nèi)容,歡迎閱讀參考。

2023年高中數(shù)學(xué)知識(shí)點(diǎn)及公式內(nèi)容

高中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)全總結(jié)

1、命題的四種形式及其相互關(guān)系是什么?

(互為逆否關(guān)系的命題是等價(jià)命題。)

原命題與逆否命題同真、同假;逆命題與否命題同真同假。

2、對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應(yīng)元素的唯一性,哪幾種對應(yīng)能構(gòu)成映射?

(一對一,多對一,允許B中有元素?zé)o原象。)

3、 函數(shù)的三要素是什么?如何比較兩個(gè)函數(shù)是否相同?

(定義域、對應(yīng)法則、值域)

4、反函數(shù)存在的條件是什么?

(一一對應(yīng)函數(shù))

求反函數(shù)的步驟掌握了嗎?

(①反解x;②互換x、y;③注明定義域)

5、反函數(shù)的性質(zhì)有哪些?

①互為反函數(shù)的圖象關(guān)于直線y=x對稱;

②保存了原來函數(shù)的單調(diào)性、奇函數(shù)性;

6、 函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?

(f(x)定義域關(guān)于原點(diǎn)對稱)

1、抽樣方法主要有:簡單隨機(jī)抽樣(抽簽法、隨機(jī)數(shù)表法)常常用于總體個(gè)數(shù)較少時(shí),它的特征是從總體中逐個(gè)抽取;系統(tǒng)抽樣,常用于總體個(gè)數(shù)較多時(shí),它的主要特征是均衡成若干部分,每部分只取一個(gè);分層抽樣,主要特征是分層按比例抽樣,主要用于總體中有明顯差異,它們的共同特征是每個(gè)個(gè)體被抽到的概率相等,體現(xiàn)了抽樣的客觀性和平等性。

2、對總體分布的估計(jì)——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計(jì)總體的期望和方差。

3、向量——既有大小又有方向的量。在此規(guī)定下向量可以在平面(或空間)平行移動(dòng)而不改變。

4、并線向量(平行向量)——方向相同或相反的向量。規(guī)定零向量與任意向量平行。

1、三類角的求法:

①找出或作出有關(guān)的角。

②證明其符合定義,并指出所求作的角。

③計(jì)算大小(解直角三角形,或用余弦定理)。

2、正棱柱——底面為正多邊形的直棱柱

正棱錐——底面是正多邊形,頂點(diǎn)在底面的射影是底面的中心。

正棱錐的計(jì)算集中在四個(gè)直角三角形中:

3、怎樣判斷直線l與圓C的位置關(guān)系?

圓心到直線的距離與圓的半徑比較。

直線與圓相交時(shí),注意利用圓的“垂徑定理”。

4、 對線性規(guī)劃問題:作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標(biāo)函數(shù)的最值。

不看后悔!清華名師揭秘學(xué)好高中數(shù)學(xué)的方法

培養(yǎng)興趣是關(guān)鍵。學(xué)生對數(shù)學(xué)產(chǎn)生了興趣,自然有動(dòng)力去鉆研。如何培養(yǎng)興趣呢?

(1) 欣賞數(shù)學(xué)的美感

比如幾何圖形中的對稱、變換前后的不變量、概念的嚴(yán)謹(jǐn)、邏輯的嚴(yán)密……

舉個(gè)例子,

通過對旋轉(zhuǎn)變換及其不變量的討論,我們可以證明反比例函數(shù)、“對勾函數(shù)”的圖象都是雙曲線——平面上到兩個(gè)定點(diǎn)的距離之差的絕對值為定值(小于兩個(gè)定點(diǎn)之間的距離)的點(diǎn)的集合。

(2)注意到數(shù)學(xué)在實(shí)際生活中的應(yīng)用。

例如和日常生活息息相關(guān)的等額本金、等額本息兩種不同的還款方式,用數(shù)列的知識(shí)就可以理解.

學(xué)好數(shù)學(xué),是現(xiàn)代公民的基本素養(yǎng)之一啊.

(3)采用靈活的教學(xué)手段,與時(shí)俱進(jìn)。

利用多種技術(shù)手段,聲、光、電多管齊下,老師可以借此把一些知識(shí)講得更具體形象,學(xué)生也更容易接受,理解更深。

(4)適當(dāng)看一些科普類的書籍和文章。

比如:學(xué)圓錐曲線的時(shí)候,可以看看一些建筑物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對此都有介紹;還有圓錐曲線光學(xué)性質(zhì)的應(yīng)用,這方面的文章也不少。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

一、圓及圓的相關(guān)量的定義

1.平面上到定點(diǎn)的距離等于定長的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長稱為半徑。

2.圓上任意兩點(diǎn)間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過圓心的弦叫

做直徑。

3.頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。

4.過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

5.直線與圓有3種位置關(guān)系:無公共點(diǎn)為相離;有2個(gè)公共點(diǎn)為相交;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。

6.兩圓之間有5種位置關(guān)系:無公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。

7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個(gè)扇形。這個(gè)扇形的半徑成為圓錐的母線。

二、有關(guān)圓的字母表示方法

圓--⊙ 半徑—r 弧--⌒ 直徑—d

扇形弧長/圓錐母線—l 周長—C 面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個(gè))

1.點(diǎn)P與圓O的位置關(guān)系(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離):

P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO

2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。

3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定

理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。

4.在同圓或等圓中,如果2個(gè)圓心角,2個(gè)圓周角,2條弧,2條弦中有一組量相等,那么他們所對應(yīng)的其余各組量都分別相等。

5.一條弧所對的圓周角等于它所對的圓心角的一半。

6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

7.不在同一直線上的3個(gè)點(diǎn)確定一個(gè)圓。

8.一個(gè)三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),到三角形3個(gè)頂點(diǎn)距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形3邊距離相等。

9.直線AB與圓O的位置關(guān)系(設(shè)OP⊥AB于P,則PO是AB到圓心的距

離):

AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO

10.圓的切線垂直于過切點(diǎn)的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個(gè)圓的切線。

11.圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P):

外離P>R+r;外切P=R+r;相交R-r

三、有關(guān)圓的計(jì)算公式

1.圓的周長C=2πr=πd

2.圓的面積S=s=πr?

3.扇形弧長l=nπr/180

4.扇形面積S=nπr? /360=rl/2

5.圓錐側(cè)面積S=πrl

四、圓的方程

1.圓的標(biāo)準(zhǔn)方程

在平面直角坐標(biāo)系中,以點(diǎn)O(a,b)為圓心,以r為半徑的圓的標(biāo)準(zhǔn)方程是

(x-a)^2+(y-b)^2=r^2

2.圓的一般方程

把圓的標(biāo)準(zhǔn)方程展開,移項(xiàng),合并同類項(xiàng)后,可得圓的一般方程是

x^2+y^2+Dx+Ey+F=0

和標(biāo)準(zhǔn)方程對比,其實(shí)D=-2a,E=-2b,F=a^2+b^2

相關(guān)知識(shí):圓的離心率e=0.在圓上任意一點(diǎn)的曲率半徑都是r.

五、圓與直線的位置關(guān)系判斷

平面內(nèi),直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是

討論如下2種情況:

(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的一元二次方程f(x)=0.

利用判別式b^2-4ac的符號(hào)可確定圓與直線的位置關(guān)系如下:

如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交

如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切

如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離

(2)如果B=0即直線為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)

將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2

令y=b,求出此時(shí)的兩個(gè)x值x1,x2,并且我們規(guī)定x1

當(dāng)x=-C/Ax2時(shí),直線與圓相離

當(dāng)x1

當(dāng)x=-C/A=x1或x=-C/A=x2時(shí),直線與圓相切

圓的定理:

1.不在同一直線上的三點(diǎn)確定一個(gè)圓。

2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

推論1.①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

推論2.圓的兩條平行弦所夾的弧相等

3.圓是以圓心為對稱中心的中心對稱圖形

4.圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

7.同圓或等圓的半徑相等

8.到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓

9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

10.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

11.定理 圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對角

12.①直線L和⊙O相交 d

②直線L和⊙O相切 d=r

③直線L和⊙O相離 d>r

13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑

15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

16.推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

17.切線長定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等, 圓心和這一點(diǎn)的連線平分兩條切線的夾角

18.圓的外切四邊形的兩組對邊的和相等 外角等于內(nèi)對角

19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

20.①兩圓外離 d>R+r ②兩圓外切 d=R+r

③兩圓相交 R-rr)

④兩圓內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)

21.定理 相交兩圓的連心線垂直平分兩圓的公共弦

22.定理 把圓分成n(n≥3):

(1)依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

(2)經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

23.定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

24.正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

27.正三角形面積√3a/4 a表示邊長

28.如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

29.弧長計(jì)算公式:L=n兀R/180

30.扇形面積公式:S扇形=n兀R^2/360=LR/2

31.內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)

32.定理 一條弧所對的圓周角等于它所對的圓心角的一半

33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑

35.弧長公式 l=a__r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2__l__r

高中數(shù)學(xué)學(xué)習(xí)方法

1.高中數(shù)學(xué)學(xué)習(xí)方法—聽好課。在課堂上集中注意力是想要學(xué)好一門科目的關(guān)鍵,高中數(shù)學(xué)課也不例外。數(shù)學(xué)也是一門極難學(xué)懂的課程,所以學(xué)生在課上課下都要花費(fèi)大量的時(shí)間,數(shù)學(xué)也不是一門只要掌握好方法就能學(xué)懂的學(xué)科,所以在高中數(shù)學(xué)的學(xué)習(xí)上,一定要好好聽課,汲取老師的經(jīng)驗(yàn),轉(zhuǎn)化為自己知識(shí),才能把握住一些技巧性的東西,從而提高自己數(shù)學(xué)的分?jǐn)?shù)。

2.高中數(shù)學(xué)學(xué)習(xí)方法—勤做題。相信很多學(xué)生在高三的時(shí)候都經(jīng)歷了瘋狂做題的階段,每天幾套幾套的卷子,做的學(xué)生心理疲憊。但是題海戰(zhàn)術(shù)面對我國現(xiàn)在高中生的普遍水平還是很管用的。如果你不像其他學(xué)霸那樣有著過人的天分,那么在高中數(shù)學(xué)的學(xué)習(xí)上,就一定要多做題、勤做題。把每個(gè)你不會(huì)的題型都多做幾遍,做的多了,數(shù)學(xué)的水平自然也就上去了。

3.高中數(shù)學(xué)學(xué)習(xí)方法,學(xué)會(huì)歸納。在數(shù)學(xué)這門學(xué)科中,最重要的是學(xué)會(huì)歸納。比如把你不會(huì)的知識(shí)、不懂的知識(shí)、易錯(cuò)的知識(shí)都整理到不同的本子上,碰到類似的題就歸納進(jìn)去,這樣對于高中數(shù)學(xué)的學(xué)習(xí)也是非常有用的。很多學(xué)生也是運(yùn)用了這樣的方法學(xué)習(xí)高中數(shù)學(xué),不僅是數(shù)學(xué)這門學(xué)科,在其他學(xué)科的學(xué)習(xí)上也要注意運(yùn)用歸納的方法。這樣才能時(shí)常糾正自己的錯(cuò)誤,并在高中數(shù)學(xué)上取得更好的成績。

1886873