六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 各學(xué)科學(xué)習(xí)方法 > 數(shù)學(xué)學(xué)習(xí)方法 >

高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)及公式

時(shí)間: 夢(mèng)熒0 分享

高考數(shù)字是比較難的,那么同學(xué)們總結(jié)過相應(yīng)的數(shù)學(xué)常用公式嗎?關(guān)于高考數(shù)學(xué)知識(shí)點(diǎn)及公式又有哪些呢?以下是小編準(zhǔn)備的一些高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)及公式,僅供參考。

高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)及公式

高考數(shù)學(xué)必考知識(shí)點(diǎn)

第一部分集合

(1)含n個(gè)元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;

(2)注意:討論的時(shí)候不要遺忘了的情況。

第二部分函數(shù)與導(dǎo)數(shù)

1、映射:注意

①第一個(gè)集合中的元素必須有象;

②一對(duì)一,或多對(duì)一。

2、函數(shù)值域的求法:

①分析法;

②配方法;

③判別式法;

④利用函數(shù)單調(diào)性;

⑤換元法;

⑥利用均值不等式;

⑦利用數(shù)形結(jié)合或幾何意義(斜率、距離、絕對(duì)值的意義等);

⑧利用函數(shù)有界性;

⑨導(dǎo)數(shù)法

3、復(fù)合函數(shù)的有關(guān)問題

(1)復(fù)合函數(shù)定義域求法:

①若f(x)的定義域?yàn)椤瞐,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出。

②若f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域。

(2)復(fù)合函數(shù)單調(diào)性的判定:

①首先將原函數(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);

②分別研究?jī)?nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;

③根據(jù)“同性則增,異性則減”來判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。

注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。

4、分段函數(shù):值域(最值)、單調(diào)性、圖象等問題,先分段解決,再下結(jié)論。

5、函數(shù)的奇偶性

(1)函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要條件;

(2)是奇函數(shù);

(3)是偶函數(shù);

(4)奇函數(shù)在原點(diǎn)有定義,則;

(5)在關(guān)于原點(diǎn)對(duì)稱的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;

(6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價(jià)變形,再判斷其奇偶性;

三角函數(shù)。

注意歸一公式、誘導(dǎo)公式的正確性。

數(shù)列題。

1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰為首項(xiàng),誰為公差(公比)的等差(等比)數(shù)列;

2、最后一問證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的`式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證;

3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單

立體幾何題。

1、證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;

2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時(shí),要建系;

3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

概率問題。

1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);

2、搞清是什么概率模型,套用哪個(gè)公式;

3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;

4、求概率時(shí),正難則反(根據(jù)p1+p2+……+pn=1);

5、注意計(jì)數(shù)時(shí)利用列舉、樹圖等基本方法;

6、注意放回抽樣,不放回抽樣;

正弦、余弦典型例題。

1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°

3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°

4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點(diǎn),EF⊥BC,垂足為F,求sin∠EBF的值。

正弦、余弦解題訣竅。

1、已知兩角及一邊,或兩邊及一邊的對(duì)角(對(duì)三角形是否存在要討論)用正弦定理。

2、已知三邊,或兩邊及其夾角用余弦定理

3、余弦定理對(duì)于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負(fù),還是為零,就可以確定是鈍角。直角還是銳角。

任一x=A,x=B,記做AB

AB,BAA=B

AB={x|x=A,且x=B}

AB={x|x=A,或x=B}

Card(AB)=card(A)+card(B)—card(AB)

(1)命題

原命題若p則q

逆命題若q則p

否命題若p則q

逆否命題若q,則p

(2)AB,A是B成立的充分條件

BA,A是B成立的必要條件

AB,A是B成立的充要條件

1、集合元素具有

①確定性;

②互異性;

③無序性

2、集合表示方法

①列舉法;

②描述法;

③韋恩圖;

④數(shù)軸法

(3)集合的運(yùn)算

①A∩(B∪C)=(A∩B)∪(A∩C)

②Cu(A∩B)=CuA∪CuB

Cu(A∪B)=CuA∩CuB

(4)集合的性質(zhì)

n元集合的字集數(shù):2n

真子集數(shù):2n—1;

非空真子集數(shù):2n—2

兩個(gè)復(fù)數(shù)相等的定義:

如果兩個(gè)復(fù)數(shù)的實(shí)部和虛部分別相等,那么我們就說這兩個(gè)復(fù)數(shù)相等,即:如果a,b,c,d∈R,那么a+bi=c+di  a=c,b=d。特殊地,a,b∈R時(shí),a+bi=0

a=0,b=0。

復(fù)數(shù)相等的充要條件,提供了將復(fù)數(shù)問題化歸為實(shí)數(shù)問題解決的途徑。

復(fù)數(shù)相等特別提醒:

一般地,兩個(gè)復(fù)數(shù)只能說相等或不相等,而不能比較大小。如果兩個(gè)復(fù)數(shù)都是實(shí)數(shù),就可以比較大小,也只有當(dāng)兩個(gè)復(fù)數(shù)全是實(shí)數(shù)時(shí)才能比較大小。

解復(fù)數(shù)相等問題的方法步驟:

(1)把給的復(fù)數(shù)化成復(fù)數(shù)的標(biāo)準(zhǔn)形式;

(2)根據(jù)復(fù)數(shù)相等的充要條件解之。

高考數(shù)學(xué)常用公式大全

兩角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些數(shù)列前n項(xiàng)和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角

高考數(shù)學(xué)選擇題答題技巧

一、選擇題整體攻略

1.審題要慢,做題要快,下手要準(zhǔn)。

要認(rèn)真審題。做題時(shí)忌諱的就是不認(rèn)真讀題,埋頭苦算,結(jié)果不但浪費(fèi)了大量的時(shí)間,甚至有時(shí)候還選錯(cuò),結(jié)果事倍功半。所以一定要讀透題,由題迅速聯(lián)想到涉及到的概念,公式,定理以及知識(shí)點(diǎn)中要注意的問題。發(fā)掘題目中的隱含條件,要去偽存真,領(lǐng)會(huì)題目的真正含義。

2.提高解選擇題的速度,把握好時(shí)間。

數(shù)學(xué)選擇題是知識(shí)靈活運(yùn)用,解題要求是只要結(jié)果、不要過程。12個(gè)選擇題,解題的基本原則是:小題不能大做,要求“快、準(zhǔn)、巧”。因而答題方法很有技巧性,如果題題都嚴(yán)格論證,個(gè)個(gè)都詳細(xì)演算,耗時(shí)太多,以致于很多學(xué)生沒時(shí)間做后面會(huì)做的題而造成隱性失分,留下終生遺憾。所以,一定要把握好做題時(shí)間,容易的一分鐘一題,難題也不超過五分鐘。

3.仔細(xì)檢查,不留空白。

最后,做完題后如果尚有時(shí)間,要仔細(xì)檢查,有沒有遺漏的,有沒有涂錯(cuò)的,全面認(rèn)真地再做一遍,可用不同的方法做一下,驗(yàn)證答案。另外遇到真不會(huì)做的,也不要空著不做,一定要選個(gè)答案。


2240451