六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦>學(xué)習(xí)方法>各學(xué)科學(xué)習(xí)方法>數(shù)學(xué)學(xué)習(xí)方法>

關(guān)于初中數(shù)學(xué)三年重難點(diǎn)知識(shí)點(diǎn)總結(jié)

時(shí)間: 文瓊4587 分享

正確理解和掌握數(shù)學(xué)的一些基本概念、法則、公式、定理,把握他們之間的內(nèi)在聯(lián)系,因?yàn)閿?shù)學(xué)是一門知識(shí)的連貫性和邏輯性都很強(qiáng)的學(xué)科,正確掌握學(xué)過(guò)的每一個(gè)概念、法則、公式、定理是學(xué)習(xí)的基礎(chǔ)。下面是小編為大家整理的初中數(shù)學(xué)三年重難點(diǎn)知識(shí)點(diǎn)總結(jié),希望對(duì)您有所幫助。

初中數(shù)學(xué)三年重難點(diǎn)知識(shí)點(diǎn)


▼▼目錄▼▼

初中數(shù)學(xué)三年重難點(diǎn)知識(shí)點(diǎn)

初中數(shù)學(xué)三重難點(diǎn):基本知識(shí)

初中數(shù)學(xué)三重難點(diǎn):基本定理


關(guān)于初中數(shù)學(xué)三年重難點(diǎn)知識(shí)點(diǎn)總結(jié)

01構(gòu)建完整的知識(shí)框架

1.構(gòu)建完整的知識(shí)框架是我們解決問(wèn)題的基礎(chǔ),想要學(xué)好數(shù)學(xué)必須重視基礎(chǔ)概念,必須加深對(duì)知識(shí)點(diǎn)的理解,然后會(huì)運(yùn)用知識(shí)點(diǎn)解決問(wèn)題,遇到問(wèn)題自己學(xué)會(huì)反思及多維度的思考,最后形成自己的思路和方法。但有很多初中學(xué)生不重視書本的概念,對(duì)某些概念一知半解,對(duì)知識(shí)點(diǎn)沒(méi)有吃透,知識(shí)體系不完整,就會(huì)出現(xiàn)成績(jī)飄忽不定的現(xiàn)象。

2.正確理解和掌握數(shù)學(xué)的一些基本概念、法則、公式、定理,把握他們之間的內(nèi)在聯(lián)系。由于數(shù)學(xué)是一門知識(shí)的連貫性和邏輯性都很強(qiáng)的學(xué)科,正確掌握學(xué)過(guò)的每一個(gè)概念、法則、公式、定理可以為以后的學(xué)習(xí)打下良好的基礎(chǔ),如果在學(xué)習(xí)某一內(nèi)容或解某一題時(shí)碰到了困難,那么很有可能就是因?yàn)榕c其有關(guān)的、以前的一些基本知識(shí)沒(méi)有掌握好所造成的,因此要經(jīng)常查缺補(bǔ)漏,找到問(wèn)題并及時(shí)解決之,努力做到發(fā)現(xiàn)一個(gè)問(wèn)題及時(shí)解決一個(gè)問(wèn)題。只有基礎(chǔ)扎實(shí),解決問(wèn)題才能得心應(yīng)手,成績(jī)才會(huì)提高。

02初中數(shù)學(xué)中考知識(shí)重難點(diǎn)分析

1.函數(shù)(一次函數(shù)、反比例函數(shù)、二次函數(shù))中考占總分的15%左右。

特別是二次函數(shù)是中考的重點(diǎn),也是中考的難點(diǎn),在填空、選擇、解答題中均會(huì)出現(xiàn),且知識(shí)點(diǎn)多,題型多變。

而且一道解答題一般會(huì)在試卷最后兩題中出現(xiàn),一般二次函數(shù)的應(yīng)用和二次函數(shù)的圖像、性質(zhì)及三角形、四邊形綜合題難度較大。有一定難度。

如果在這一環(huán)節(jié)掌握不好,將會(huì)直接影響代數(shù)的基礎(chǔ),會(huì)對(duì)中考的分?jǐn)?shù)會(huì)造成很大的影響。

2.整式、分式、二次根式的化簡(jiǎn)運(yùn)算

整式的運(yùn)算、因式分解、二次根式、科學(xué)計(jì)數(shù)法及分式化簡(jiǎn)等都是初中學(xué)習(xí)的重點(diǎn),它貫穿于整個(gè)初中數(shù)學(xué)的知識(shí),是我們進(jìn)行數(shù)學(xué)運(yùn)算的基礎(chǔ),其中因式分解及理解因式分解和整式乘法運(yùn)算的關(guān)系、分式的運(yùn)算是難點(diǎn)。

中考一般以選擇、填空形式出現(xiàn),但卻是解答題完整解答的基礎(chǔ)。運(yùn)算能力的熟練程度和答題的正確率有直接的關(guān)系,掌握不好,答題正確率就不會(huì)很高,進(jìn)而后面的的方程、不等式、函數(shù)也無(wú)法學(xué)好。

3.應(yīng)用題,中考中占總分的30%左右

包括方程(組)應(yīng)用,一元一次不等式(組)應(yīng)用,函數(shù)應(yīng)用,解三角形應(yīng)用,概率與統(tǒng)計(jì)應(yīng)用幾種題型。

一般會(huì)出現(xiàn)二至三道解答題(30分左右)及2—3道選擇、填空題(10分—15分),占中考總分的30%左右。

現(xiàn)在中考對(duì)數(shù)學(xué)實(shí)際應(yīng)用的考察會(huì)越來(lái)越多,數(shù)學(xué)與生活聯(lián)系越來(lái)越緊密,應(yīng)用題要求學(xué)生的理解辨別能力很強(qiáng),能從問(wèn)題中讀出必要的數(shù)學(xué)信息,并從數(shù)學(xué)的角度尋求解決問(wèn)題的策略和方法。方程思想、函數(shù)思想、數(shù)形結(jié)合思想也是中學(xué)階段一種很重要的數(shù)學(xué)思想、是解決很多問(wèn)題的工具。

4.三角形(全等、相似、角平分線、中垂線、高線、解直角三角形)、四邊形(平行四邊形、矩形、菱形、正方形),中考中占總分25%左右。

三角形是初中幾何圖形中內(nèi)容最多的一塊知識(shí),也是學(xué)好平面幾何的必要基礎(chǔ),貫穿初二到到初三的幾何知識(shí),其中的幾何證明題及線段長(zhǎng)度和角度的計(jì)算對(duì)很多學(xué)生是難點(diǎn)。

只有學(xué)好了三角形,后面的四邊形乃至圓的證明就容易理解掌握了,反之,后面的一切幾何證明更將無(wú)從下手,沒(méi)有清晰的思路。

其中解三角形在初三下冊(cè)學(xué)習(xí),是以直角三角形為基礎(chǔ)的,在中考中會(huì)以船的觸礁、樓高、影子問(wèn)題出現(xiàn)一道大題。因此在初中數(shù)學(xué)學(xué)習(xí)中也是一個(gè)重點(diǎn)。

四邊形在初二進(jìn)行學(xué)習(xí)的,其中特殊四邊形的性質(zhì)及判定定理很多,容易混淆,深刻理解這些性質(zhì)和判定、理清它們之間的聯(lián)系是解決證明和計(jì)算的基礎(chǔ),四邊形中題型多變,計(jì)算、證明都有一定難度。經(jīng)常在中考選擇題、填空題及解答題的壓軸題(最后一題)中出現(xiàn),對(duì)學(xué)生綜合運(yùn)用知識(shí)的能力要求較高。

5.圓,中考中占總分的10%左右

包括圓的基本性質(zhì),點(diǎn)、直線與圓位置關(guān)系,圓心角與圓周角,切線的性質(zhì)和判定,扇形弧長(zhǎng)及面積,這章節(jié)知識(shí)是在初三學(xué)習(xí)的。

其中切線的性質(zhì)和判定、圓中的基本性質(zhì)的理解和運(yùn)用、直線與圓的位置關(guān)系、圓中的一些線段長(zhǎng)度及角度的計(jì)算是重點(diǎn)也是難點(diǎn)。

03各年級(jí)的常見(jiàn)現(xiàn)象

初一學(xué)不好

許多小學(xué)數(shù)學(xué)學(xué)科成績(jī)很好的學(xué)生到了初中數(shù)學(xué)成績(jī)會(huì)出現(xiàn)下滑,成績(jī)不穩(wěn)定等現(xiàn)象。初中數(shù)學(xué)與小學(xué)數(shù)學(xué)相比,知識(shí)的深度、廣度、能力要求都有不小的提高。

對(duì)概念、法則、公式、定理知識(shí)一知半解,沒(méi)有吃透課本內(nèi)容。課后又不能及時(shí)鞏固、總結(jié)、尋找知識(shí)間的聯(lián)系,只是趕作業(yè)、套題型,遇到難題缺乏思考,學(xué)習(xí)方法的缺乏或不得當(dāng)嚴(yán)重制約學(xué)生的有效思維,久而久之容易形成思維惰性,學(xué)不好數(shù)學(xué)。

以上這些問(wèn)題如果在初一階段不能很好的解決,在初二的兩極分化階段,同學(xué)們可能就會(huì)出現(xiàn)成績(jī)的滑坡。相反,如果能夠打好初一數(shù)學(xué)基礎(chǔ),初二的學(xué)習(xí)只會(huì)是更上一層樓!

策略:

1.狠抓基礎(chǔ),循序漸進(jìn)。立足課本,把課本知識(shí)點(diǎn)吃透,輔以基礎(chǔ)知識(shí)、基本方法的訓(xùn)練,先以基礎(chǔ)題為主,培養(yǎng)運(yùn)算能力,提升自信心。等基礎(chǔ)知識(shí)熟悉了,再逐漸加深難度,能舉一反三,形成自己的思維。能靈活運(yùn)用知識(shí)點(diǎn)。

2.培養(yǎng)良好的學(xué)習(xí)習(xí)慣。及時(shí)預(yù)習(xí)書本知識(shí),然后帶著問(wèn)題去聽(tīng)課,提高課堂效率。

總結(jié)相似的題型,收集自己的典型錯(cuò)題和不會(huì)做的題目。就不懂得問(wèn)題,積極討論、請(qǐng)教老師。自己制定每日學(xué)習(xí)計(jì)劃,形成習(xí)慣。

3.提高作業(yè)質(zhì)量和效率。每天作業(yè)是對(duì)當(dāng)天所學(xué)內(nèi)容的鞏固,如果能高質(zhì)量的完成當(dāng)天的作業(yè),就能把當(dāng)天所學(xué)的知識(shí)點(diǎn)消化吸收,遺留的問(wèn)題就少,進(jìn)而學(xué)習(xí)效率就高。

初二成績(jī)下滑

初中數(shù)學(xué)是一個(gè)整體。初二的難點(diǎn)多,初三的考點(diǎn)多。相對(duì)而言,初一數(shù)學(xué)知識(shí)點(diǎn)雖然很多,但都比較基礎(chǔ),中考多以基礎(chǔ)題為主,要求不高。

初二是初中數(shù)學(xué)學(xué)習(xí)的一個(gè)拐點(diǎn),坡度突然增加,知識(shí)點(diǎn)上的增多和難度的增加,在學(xué)習(xí)方法上學(xué)生是很容易適應(yīng)的。特別是幾何內(nèi)容的增加,它的研究對(duì)象從“數(shù)”到“形”發(fā)生變化,方法也從“運(yùn)算”到“推理”發(fā)生變化,學(xué)生的分析能力和表達(dá)能力跟不上就很難從圖形中找到關(guān)系,推理論證困難學(xué)科(物理)也相應(yīng)增加,學(xué)業(yè)加重,精力分散,有些學(xué)生有些力不從心,缺乏毅力的,就會(huì)慢慢掉隊(duì)。

策略:

1.學(xué)會(huì)給自己明確目標(biāo),以增強(qiáng)學(xué)習(xí)的目的性、主動(dòng)性。

2.從基礎(chǔ)知識(shí)入手,用簡(jiǎn)單、中等的題來(lái)訓(xùn)練自己的解題思路,思考“憑什么”從第一步走到第二步,它們之間的關(guān)聯(lián)性、邏輯性是怎樣的?從而真正形成自己的做題思維。

3.堅(jiān)持養(yǎng)成總結(jié)題型、錯(cuò)題、典型題的習(xí)慣,常堅(jiān)持3—4周后,就能養(yǎng)成習(xí)慣。

4.過(guò)好幾何入門關(guān)——識(shí)圖、書寫、推理。書寫是幾何入門的難點(diǎn),有條理的書寫時(shí)培養(yǎng)邏輯推理能力的保證。應(yīng)根據(jù)題目的要求,步步有據(jù),句句有理,由條件推理得到結(jié)論。對(duì)書本上的定義、性質(zhì)定理、判定定理要非常熟悉。

5.進(jìn)行知識(shí)歸類,如將判定方法、定理歸類整合,使所學(xué)知識(shí)系統(tǒng)化。

初三力不從心

進(jìn)入初三以后,學(xué)生的學(xué)習(xí)到了一個(gè)新的階段,為了總復(fù)習(xí)能有更多的時(shí)間,各科上課節(jié)奏開(kāi)始加快,學(xué)業(yè)任務(wù)相應(yīng)加重,基礎(chǔ)不扎實(shí)的學(xué)生就會(huì)跟不上,嚴(yán)重時(shí)自信心會(huì)嚴(yán)重受挫,感覺(jué)力不從心。

平時(shí)做試卷審題不嚴(yán),看題不清,能做對(duì)的題目也沒(méi)拿到分。小錯(cuò)不斷,沒(méi)有養(yǎng)成積累錯(cuò)題的習(xí)慣。遇到綜合性問(wèn)題時(shí),缺乏解題思路和方法。遇到難題,就自動(dòng)放棄了。長(zhǎng)時(shí)間持續(xù)下去,喪失自信心,成績(jī)也會(huì)下降。

策略:

1.第一步要增強(qiáng)自己的自信心。從時(shí)間、中考試卷難度、現(xiàn)階段的情況、預(yù)期目標(biāo)、成功提高成績(jī)學(xué)生案例等方面分析,增強(qiáng)學(xué)習(xí)動(dòng)力。

2.狠抓基礎(chǔ),循序漸進(jìn)。利用上初三前的暑假把初一、初二年級(jí)的知識(shí)漏洞通過(guò)查、學(xué)、練、測(cè)的循環(huán)模式補(bǔ)起來(lái),形成完整的知識(shí)框架,在繼續(xù)學(xué)習(xí)新知識(shí)時(shí)能跟上老師節(jié)奏,自然會(huì)輕松很多。

3.在學(xué)習(xí)的過(guò)程中,培養(yǎng)預(yù)習(xí)、帶著問(wèn)題上課、復(fù)習(xí)、積累、總結(jié)的習(xí)慣,從“要學(xué)”變成“會(huì)學(xué)”,最后會(huì)“自學(xué)”。不僅對(duì)現(xiàn)在很重要,對(duì)以后高中的學(xué)習(xí)也有很大幫助。

4.基礎(chǔ)扎實(shí)之后,可以逐漸增加難度,做一些中等難度的題目,也不能盲目的只顧做題,要注重思維、思考問(wèn)題的能力,解題的方法、技巧的訓(xùn)練。

5.突出重點(diǎn),突破難點(diǎn)。認(rèn)真分析按照中考考綱及近幾年中考數(shù)學(xué)試卷命題的變化規(guī)律,對(duì)重點(diǎn)考查內(nèi)容進(jìn)行分類訓(xùn)練,對(duì)難點(diǎn)進(jìn)行個(gè)個(gè)擊破。

6.熟悉并運(yùn)用常用的數(shù)學(xué)思想,如方程思想、整體思想、化歸思想、函數(shù)思想、數(shù)形結(jié)合思想、分類討論思想等。

7.中考基礎(chǔ)題真題演練。要求達(dá)到自己理想的正確率,也可以全面考察知識(shí)漏洞情況,可以再做復(fù)習(xí)。

8.中考?jí)狠S題突破??v觀數(shù)學(xué)中考命題規(guī)律,壓軸題主要出現(xiàn)在函數(shù)和三角形或四邊形或圓部分的動(dòng)態(tài)問(wèn)題或分類討論的內(nèi)容。對(duì)壓軸題進(jìn)行分類剖析,形成解題思路和技巧。

返回目錄>>>

初中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)總結(jié):基本知識(shí)

● 一、數(shù)與代數(shù)

A、數(shù)與式:

1、有理數(shù):①整數(shù)→正整數(shù),0,負(fù)整數(shù);

②分?jǐn)?shù)→正分?jǐn)?shù),負(fù)分?jǐn)?shù)

數(shù)軸:①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较?,就得到?shù)軸。

②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。

③如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。

④數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。

絕對(duì)值:①在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。

②正數(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0。兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。

有理數(shù)的運(yùn)算:帶上符號(hào)進(jìn)行正常運(yùn)算。

加法:

①同號(hào)相加,取相同的符號(hào),把絕對(duì)值相加。

②異號(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。

③一個(gè)數(shù)與0相加不變。

減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。

乘法:①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。

②任何數(shù)與0相乘得0。

③乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。

除法:①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。

②0不能作除數(shù)。

乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)或指數(shù)。

混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。

2、實(shí)數(shù)

無(wú)理數(shù)

無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù),例如:π=3.1415926…

平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。

②如果一個(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。

③一個(gè)正數(shù)有2個(gè)平方根;0的平方根為0;負(fù)數(shù)沒(méi)有平方根。

④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開(kāi)平方,其中A叫做被開(kāi)方數(shù)。

立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。

②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。

③求一個(gè)數(shù)A的立方根的運(yùn)算叫開(kāi)立方,其中A叫做被開(kāi)方數(shù)。

實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無(wú)理數(shù)。

②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣;

③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。

3、代數(shù)式

代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。

合并同類項(xiàng):①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng);②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。

③在合并同類項(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。

4、整式與分式

整式:①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。

②一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。

③一個(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。

整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類項(xiàng)。

冪的運(yùn)算:

A^M+A^N=A^(M+N)

(A^M)^N=A^(MN)

(A/B)^N=A^N/B^N

除法一樣。

整式的乘法:

①單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

②單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

③多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。

公式兩條:平方差公式:A^2-B^2=(A+B)(A-B);

完全平方公式:(A+B)^2=A^2+2AB+B^2;(A-B)^2=A^2-2AB+B^2。

整式的除法:①單項(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。

②多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。

分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。

方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。

分式:①整式A除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0。

②分式的分子與分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。

分式的運(yùn)算:

乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。

加減法:①同分母分式相加減,分母不變,把分子相加減。

②異分母的分式先通分,化為同分母的分式,再加減。

分式方程:①分母中含有未知數(shù)的方程叫分式方程。

②使方程的分母為0的解稱為原方程的增根。

B、方程與不等式

1、方程與方程組

一元一次方程:①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。

解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。

二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。

二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。

適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。

二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。

解二元一次方程組的方法:代入消元法;加減消元法。

一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程:ax^2+bx+c=0;

1)一元二次方程的二次函數(shù)的關(guān)系

大家已經(jīng)學(xué)過(guò)二次函數(shù)(即拋物線)了,對(duì)他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來(lái)表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)Y=0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來(lái),一元二次方程就是二次函數(shù)中,圖像與X軸的交點(diǎn)。也就是該方程的解了

2)一元二次方程的解法

大家知道,二次函數(shù)有頂點(diǎn)式(-b/2a,4ac-b^2/4a),這大家要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說(shuō)過(guò)了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解

(1)配方法

利用配方,使方程變?yōu)橥耆椒焦剑谟弥苯娱_(kāi)平方法去求出解

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解

(3)公式法

這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根X1={-b+√[b^2-4ac)]}/2a,X2={-b-√[b^2-4ac)]}/2a

3)解一元二次方程的步驟:

(1)配方法的步驟:

先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式

(2)分解因式法的步驟:

把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

(3)公式法

就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c

4)韋達(dá)定理

利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用

5)一元二次方程根的情況

利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao ta”,而△=b2-4ac,這里可以分為3種情況:

I當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;

II當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;

III當(dāng)△B,則A+C>B+C;

在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向;

例如:如果A>B,則A-C>B-C;

在不等式中,如果乘以同一個(gè)正數(shù),不等式符號(hào)不改向;

例如:如果A>B,則A*C>B*C(C>0);

在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號(hào)改向;

例如:如果A>B,則A*C

如果不等式乘以0,那么不等號(hào)改為等號(hào);

所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘的數(shù)就不等于0,否則不等式不成立;

3、函數(shù)

變量:因變量Y,自變量X。

在用圖像表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。

一次函數(shù):①若兩個(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。

②當(dāng)B=0時(shí),稱Y是X的正比例函數(shù)。

一次函數(shù)的圖像:

①把一個(gè)函數(shù)的自變量X與對(duì)應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖像。

②正比例函數(shù)Y=KX的圖像是經(jīng)過(guò)原點(diǎn)的一條直線。

③在一次函數(shù)中,當(dāng)K〈0,B〈O時(shí),則經(jīng)234象限;

當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;

當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;

當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。

④當(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。

●二、空間與圖形

A、圖形的認(rèn)識(shí)

1、點(diǎn),線,面

點(diǎn),線,面:①圖形是由點(diǎn),線,面構(gòu)成的。

②面與面相交得線,線與線相交得點(diǎn)。

③點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。

展開(kāi)與折疊:①在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。

②N棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。

截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。

視圖:主視圖,左視圖,俯視圖。

多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

弧、扇形:①由一條弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。

②圓可以分割成若干個(gè)扇形。

2、角

線:①線段有兩個(gè)端點(diǎn)。

②將線段向一個(gè)方向無(wú)限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。

③將線段的兩端無(wú)限延長(zhǎng)就形成了直線。直線沒(méi)有端點(diǎn)。

④經(jīng)過(guò)兩點(diǎn)有且只有一條直線。

比較長(zhǎng)短:①兩點(diǎn)之間的所有連線中,線段最短。兩點(diǎn)之間直線最短。

②兩點(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。

角的度量與表示:①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。

②一度的1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。

角的比較:①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。

②一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角,180。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角,360。

③從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。

平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。

②經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。

③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。

垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。

②互相垂直的兩條直線的交點(diǎn)叫做垂足。

③平面內(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。

垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無(wú)限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫法,后面會(huì)講)一定要把線段穿出2點(diǎn)。

垂直平分線定理:

性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;

判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上;

角平分線:把一個(gè)角平分的射線叫該角的角平分線。

定義中有幾個(gè)要點(diǎn)要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱軸才會(huì)用直線的,這也涉及到軌跡的問(wèn)題,一個(gè)角的角平分線就是到角兩邊距離相等的點(diǎn)的集合。

性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等;

判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上;

正方形:一組鄰邊相等的矩形是正方形

性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)

判定:1、對(duì)角線相等的菱形2、鄰邊相等的矩形

返回目錄>>>

初中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)總結(jié):基本定理

1、過(guò)兩點(diǎn)有且只有一條直線

2、兩點(diǎn)之間線段最短

3、同角或等角的補(bǔ)角相等

——補(bǔ)角=180-角度。

4、同角或等角的余角相等——余角=90-角度。

5、過(guò)一點(diǎn)有且只有一條直線和已知直線垂直

6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

7、平行公理:經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行

8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9、同位角相等,兩直線平行

10、內(nèi)錯(cuò)角相等,兩直線平行

11、同旁內(nèi)角互補(bǔ),兩直線平行

12、兩直線平行,同位角相等

13、兩直線平行,內(nèi)錯(cuò)角相等

14、兩直線平行,同旁內(nèi)角互補(bǔ)

15、定理

三角形兩邊的和大于第三邊

16、推論

三角形兩邊的差小于第三邊

17、三角形內(nèi)角和定理:

三角形三個(gè)內(nèi)角的和等于180°

18、推論1

直角三角形的兩個(gè)銳角互余

19、推論2

三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

20、推論3

三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

21、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

22、邊角邊公理(SAS):有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等

23、角邊角公理(

ASA):有兩角和它們的夾邊對(duì)應(yīng)相等的

兩個(gè)三角形全等

24、推論(AAS):有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等

25、邊邊邊公理(SSS):有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等

27、定理1

在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

28、定理2

到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

30、推論1

等腰三角形頂角的平分線平分底邊并且垂直于底邊

31、推論2等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;

32、推論3

等邊三角形的各角都相等,并且每一個(gè)角都等于60°

33、等腰三角形的判定定理

如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

34、等腰三角形的性質(zhì)定理

等腰三角形的兩個(gè)底角相等

(即等邊對(duì)等角)

35、推論1

三個(gè)角都相等的三角形是等邊三角形

36、推論

有一個(gè)角等于60°的等腰三角形是等邊三角形

37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半

38、直角三角形斜邊上的中線等于斜邊上的一半

39、定理

線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

40、逆定理

和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合

42、定理1

關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形

43、定理

如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線

44、定理3

兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上

45、逆定理

如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱

46、勾股定理

直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

47、勾股定理的逆定理

如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形

48、定理

四邊形的內(nèi)角和等于360°

49、四邊形的外角和等于360°

50、多邊形內(nèi)角和定理

n邊形的內(nèi)角的和等于(n-2)×180°

51、推論

任意多邊的外角和等于360°

52、平行四邊形性質(zhì)定理1

平行四邊形的對(duì)角相等

53、平行四邊形性質(zhì)定理2

平行四邊形的對(duì)邊相等

54、推論

夾在兩條平行線間的平行線段相等

55、平行四邊形性質(zhì)定理3

平行四邊形的對(duì)角線互相平分

56、平行四邊形判定定理1

兩組對(duì)角分別相等的四邊形是平行四邊形

57、平行四邊形判定定理2

兩組對(duì)邊分別相等的四邊

形是平行四邊形

58、平行四邊形判定定理3

對(duì)角線互相平分的四邊形是平行四邊形

59、平行四邊形判定定理4

一組對(duì)邊平行相等的四邊形是平行四邊形

60、矩形性質(zhì)定理1

矩形的四個(gè)角都是直角

61、矩形性質(zhì)定理2

矩形的對(duì)角線相等

62、矩形判定定理1

有三個(gè)角是直角的四邊形是矩形

63、矩形判定定理2

對(duì)角線相等的平行四邊形是矩形

64、菱形性質(zhì)定理1

菱形的四條邊都相等

65、菱形性質(zhì)定理2

菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角

66、菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2

67、菱形判定定理1

四邊都相等的四邊形是菱形

68、菱形判定定理2

對(duì)角線互相垂直的平行四邊形是菱形

69、正方形性質(zhì)定理1

正方形的四個(gè)角都是直角,四條邊都相等

70、正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角

71、定理1

關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的

72、定理2

關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分

73、逆定理

如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱

74、等腰梯形性質(zhì)定理

等腰梯形在同一底上的兩個(gè)角相等

75、等腰梯形的兩條對(duì)角線相等

76、等腰梯形判定定理

在同一底上的兩個(gè)角相等的梯

形是等腰梯形

77、對(duì)角線相等的梯形是等腰梯形

78、平行線等分線段定理

如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

79、推論1

經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

80、推論2

經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊

81、三角形中位線定理

三角形的中位線平行于第三邊,并且等于它的一半

82、梯形中位線定理

梯形的中位線平行于兩底,并且等于兩底和的一半

L=(a+b)÷2

S=L×h

83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc

如果

ad=bc,那么a:b=c:d

84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d

85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

86、平行線分線段成比例定理

三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例

87、推論

平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例

88、定理

如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

89、平行于三角形的一邊,并且和其他兩邊相交的直線,

所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例

90、定理

平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似

91、相似三角形判定定理1

兩角對(duì)應(yīng)相等,兩三角形相似(ASA)

92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似

93、判定定理2

兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS)

94、判定定理3

三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)

95、定理

如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似(HL)

96、性質(zhì)定理1

相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比

97、性質(zhì)定理2

相似三角形周長(zhǎng)的比等于相似比

98、性質(zhì)定理3

相似三角形面積的比等于相似比的平方

99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

101、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

104、同圓或等圓的半徑相等

105、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線

107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

109、定理

不在同一直線上的三點(diǎn)確定一個(gè)圓。

110、垂徑定理

垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

111、推論1

①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

②弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧(直徑)

③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

112、推論2

圓的兩條平行弦所夾的弧相等

113、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

114、定理

在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

115、推論

在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

116、定理

一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

117、推論1

同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

118、推論2

半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

119、推論3

如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

120、定理

圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

121、①直線L和⊙O相交

0

②直線L和⊙O相切

d=r

③直線L和⊙O相離

d>r

122、切線的判定定理

經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線

123、切線的性質(zhì)定理

圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑

124、推論1

經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)

125、推論2

經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心

126、切線長(zhǎng)定理

從圓外一點(diǎn)引圓的兩條切線相交與一點(diǎn),它們的切線長(zhǎng)相等

,圓心和這一點(diǎn)的連線平分兩條切線的夾角

127、圓的外切四邊形的兩組對(duì)邊的和相等

128、弦切角定理

弦切角等于它所夾的弧對(duì)的圓周角?

129、推論

如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

130、相交弦定理

圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等

131、推論

如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

132、切割線定理

從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)?

133、推論

從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條

割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等

134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

135、①兩圓外離

d>R+r

②兩圓外切

d=R+r

③兩圓相交

R-r<dr)

④兩圓內(nèi)切

d=R-r(R>r)

⑤兩圓內(nèi)含

dr)

136、定理

相交兩圓的連心線垂直平分兩圓的公共弦

137、定理

把圓平均分成n(n≥3):

⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

⑵經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

138、定理

任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

139、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

140、定理

正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

141、正n邊形的面積Sn=pn*rn/2

p表示正n邊形的周長(zhǎng)

142、正三角形面積√3a^2/4

a表示邊長(zhǎng)

143、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

144、弧長(zhǎng)計(jì)算公式:L=n兀R/180——》L=nR

145、扇形面積公式:S扇形=n兀R^2/360=LR/2

146、內(nèi)公切線長(zhǎng)=d-(R-r)

外公切線長(zhǎng)=d-(R+r)

返回目錄>>>

關(guān)于初中數(shù)學(xué)三年重難點(diǎn)知識(shí)點(diǎn)總結(jié)相關(guān)文章

九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(重點(diǎn))

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

2022初中數(shù)學(xué)重要知識(shí)點(diǎn)匯總

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納(冀教版)

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)梳理

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)最全提綱

371478