最新初一數(shù)學(xué)知識點歸納
數(shù)學(xué)是一切科學(xué)得力的助手和工具,初一的數(shù)學(xué)知識是奠定中學(xué)數(shù)學(xué)學(xué)習(xí)的基礎(chǔ)。今天小編在這里給大家整理了一些關(guān)于初一數(shù)學(xué)知識點歸納,我們一起來看看吧!
初一數(shù)學(xué)知識點歸納
1.數(shù)軸
(1)數(shù)軸的概念:規(guī)定了原點、正方向、單位長度的直線叫做數(shù)軸.
數(shù)軸的三要素:原點,單位長度,正方向.
(2)數(shù)軸上的點:所有的有理數(shù)都可以用數(shù)軸上的點表示,但數(shù)軸上的點不都表示有理數(shù).(一般取右方向為正方向,數(shù)軸上的點對應(yīng)任意實數(shù),包括無理數(shù).)
(3)用數(shù)軸比較大?。阂话銇碚f,當(dāng)數(shù)軸方向朝右時,右邊的數(shù)總比左邊的數(shù)大.
2.相反數(shù)
(1)相反數(shù)的概念:只有符號不同的兩個數(shù)叫做互為相反數(shù).
(2)相反數(shù)的意義:掌握相反數(shù)是成對出現(xiàn)的,不能單獨存在,從數(shù)軸上看,除0外,互為相反數(shù)的兩個數(shù),它們分別在原點兩旁且到原點距離相等.
(3)多重符號的化簡:與“+”個數(shù)無關(guān),有奇數(shù)個“﹣”號結(jié)果為負(fù),有偶數(shù)個“﹣”號,結(jié)果為正.
(4)規(guī)律方法總結(jié):求一個數(shù)的相反數(shù)的方法就是在這個數(shù)的前邊添加“﹣”,如a的相反數(shù)是﹣a,m+n的相反數(shù)是﹣(m+n),這時m+n是一個整體,在整體前面添負(fù)號時,要用小括號.
3.絕對值
(1)概念:數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值.
①互為相反數(shù)的兩個數(shù)絕對值相等;
②絕對值等于一個正數(shù)的數(shù)有兩個,絕對值等于0的數(shù)有一個,沒有絕對值等于負(fù)數(shù)的數(shù).
③有理數(shù)的絕對值都是非負(fù)數(shù).
(2)如果用字母a表示有理數(shù),則數(shù)a 絕對值要由字母a本身的取值來確定:
①當(dāng)a是正有理數(shù)時,a的絕對值是它本身a;
②當(dāng)a是負(fù)有理數(shù)時,a的絕對值是它的相反數(shù)﹣a;
③當(dāng)a是零時,a的絕對值是零.
即|a|={a(a>0)0(a=0)﹣a(a<0)
4.有理數(shù)大小比較
(1)有理數(shù)的大小比較
比較有理數(shù)的大小可以利用數(shù)軸,他們從左到有的順序,即從大到小的順序(在數(shù)軸上表示的兩個有理數(shù),右邊的數(shù)總比左邊的數(shù)大);也可以利用數(shù)的性質(zhì)比較異號兩數(shù)及0的大小,利用絕對值比較兩個負(fù)數(shù)的大小.
(2)有理數(shù)大小比較的法則:
①正數(shù)都大于0;
②負(fù)數(shù)都小于0;
③正數(shù)大于一切負(fù)數(shù);
④兩個負(fù)數(shù),絕對值大的其值反而小.
【規(guī)律方法】有理數(shù)大小比較的三種方法
1.法則比較:正數(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于一切負(fù)數(shù).兩個負(fù)數(shù)比較大小,絕對值大的反而小.
2.數(shù)軸比較:在數(shù)軸上右邊的點表示的數(shù)大于左邊的點表示的數(shù).
3.作差比較:
若a﹣b>0,則a>b;
若a﹣b<0,則a
若a﹣b=0,則a=b.
5.有理數(shù)的減法
(1)有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù). 即:a﹣b=a+(﹣b)
(2)方法指引:
①在進(jìn)行減法運算時,首先弄清減數(shù)的符號;
②將有理數(shù)轉(zhuǎn)化為加法時,要同時改變兩個符號:一是運算符號(減號變加號); 二是減數(shù)的性質(zhì)符號(減數(shù)變相反數(shù));
【注意】:在有理數(shù)減法運算時,被減數(shù)與減數(shù)的位置不能隨意交換;因為減法沒有交換律.
減法法則不能與加法法則類比,0加任何數(shù)都不變,0減任何數(shù)應(yīng)依法則進(jìn)行計算.
6.有理數(shù)的乘法
(1)有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘.
(2)任何數(shù)同零相乘,都得0.
(3)多個有理數(shù)相乘的法則:①幾個不等于0的數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個時,積為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個時,積為正.②幾個數(shù)相乘,有一個因數(shù)為0,積就為0.
(4)方法指引:
①運用乘法法則,先確定符號,再把絕對值相乘.
②多個因數(shù)相乘,看0因數(shù)和積的符號當(dāng)先,這樣做使運算既準(zhǔn)確又簡單.
7.有理數(shù)的混合運算
(1)有理數(shù)混合運算順序:先算乘方,再算乘除,最后算加減;同級運算,應(yīng)按從左到右的順序進(jìn)行計算;如果有括號,要先做括號內(nèi)的運算.
(2)進(jìn)行有理數(shù)的混合運算時,注意各個運算律的運用,使運算過程得到簡化.
【規(guī)律方法】有理數(shù)混合運算的四種運算技巧
1.轉(zhuǎn)化法:一是將除法轉(zhuǎn)化為乘法,二是將乘方轉(zhuǎn)化為乘法,三是在乘除混合運算中,通常將小數(shù)轉(zhuǎn)化為分?jǐn)?shù)進(jìn)行約分計算.
2.湊整法:在加減混合運算中,通常將和為零的兩個數(shù),分母相同的兩個數(shù),和為整數(shù)的兩個數(shù),乘積為整數(shù)的兩個數(shù)分別結(jié)合為一組求解.
3.分拆法:先將帶分?jǐn)?shù)分拆成一個整數(shù)與一個真分?jǐn)?shù)的和的形式,然后進(jìn)行計算.
4.巧用運算律:在計算中巧妙運用加法運算律或乘法運算律往往使計算更簡便.
8.科學(xué)記數(shù)法—表示較大的數(shù)
(1)科學(xué)記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),n是正整數(shù),這種記數(shù)法叫做科學(xué)記數(shù)法.【科學(xué)記數(shù)法形式:a×10n,其中1≤a<10,n為正整數(shù).】
(2)規(guī)律方法總結(jié):
①科學(xué)記數(shù)法中a的要求和10的指數(shù)n的表示規(guī)律為關(guān)鍵,由于10的指數(shù)比原來的整數(shù)位數(shù)少1;按此規(guī)律,先數(shù)一下原數(shù)的整數(shù)位數(shù),即可求出10的指數(shù)n.
②記數(shù)法要求是大于10的數(shù)可用科學(xué)記數(shù)法表示,實質(zhì)上絕對值大于10的負(fù)數(shù)同樣可用此法表示,只是前面多一個負(fù)號.
9.代數(shù)式求值
(1)代數(shù)式的:用數(shù)值代替代數(shù)式里的字母,計算后所得的結(jié)果叫做代數(shù)式的值.
(2)代數(shù)式的求值:求代數(shù)式的值可以直接代入、計算.如果給出的代數(shù)式可以化簡,要先化簡再求值.
題型簡單總結(jié)以下三種:
①已知條件不化簡,所給代數(shù)式化簡;
②已知條件化簡,所給代數(shù)式不化簡;
③已知條件和所給代數(shù)式都要化簡.
10.規(guī)律型:圖形的變化類
圖形的變化類的規(guī)律題
首先應(yīng)找出圖形哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.探尋規(guī)律要認(rèn)真觀察、仔細(xì)思考,善用聯(lián)想來解決這類問題.
11.等式的性質(zhì)
(1)等式的性質(zhì)
性質(zhì)1、等式兩邊加同一個數(shù)(或式子)結(jié)果仍得等式;
性質(zhì)2、等式兩邊乘同一個數(shù)或除以一個不為零的數(shù),結(jié)果仍得等式.
(2)利用等式的性質(zhì)解方程
利用等式的性質(zhì)對方程進(jìn)行變形,使方程的形式向x=a的形式轉(zhuǎn)化.
應(yīng)用時要注意把握兩關(guān):
①怎樣變形;
②依據(jù)哪一條,變形時只有做到步步有據(jù),才能保證是正確的.
12.一元一次方程的解
定義:使一元一次方程左右兩邊相等的未知數(shù)的值叫做一元一次方程的解.
把方程的解代入原方程,等式左右兩邊相等.
13.解一元一次方程
(1)解一元一次方程的一般步驟:
去分母、去括號、移項、合并同類項、系數(shù)化為1,這僅是解一元一次方程的一般步驟,針對方程的特點,靈活應(yīng)用,各種步驟都是為使方程逐漸向x=a形式轉(zhuǎn)化.
(2)解一元一次方程時先觀察方程的形式和特點,若有分母一般先去分母;若既有分母又有括號,且括號外的項在乘括號內(nèi)各項后能消去分母,就先去括號.
(3)在解類似于“ax+bx=c”的方程時,將方程左邊,按合并同類項的方法并為一項即(a+b)x=c.使方程逐漸轉(zhuǎn)化為ax=b的最簡形式體現(xiàn)化歸思想.將ax=b系數(shù)化為1時,要準(zhǔn)確計算,一弄清求x時,方程兩邊除以的是a還是b,尤其a為分?jǐn)?shù)時;二要準(zhǔn)確判斷符號,a、b同號x為正,a、b異號x為負(fù).
14.一元一次方程的應(yīng)用
(一)、一元一次方程解應(yīng)用題的類型有:
(1)探索規(guī)律型問題;
(2)數(shù)字問題;
(3)銷售問題(利潤=售價﹣進(jìn)價,利潤率=利潤進(jìn)價×100%);
(4)工程問題(①工作量=人均效率×人數(shù)×?xí)r間;②如果一件工作分幾個階段完成,那么各階段的工作量的和=工作總量);
(5)行程問題(路程=速度×?xí)r間);
(6)等值變換問題;
(7)和,差,倍,分問題;
(8)分配問題;
(9)比賽積分問題;
(10)水流航行問題(順?biāo)俣?靜水速度+水流速度;逆水速度=靜水速度﹣水流速度).
(二)、利用方程解決實際問題的基本思路如下:首先審題找出題中的未知量和所有的已知量,直接設(shè)要求的未知量或間接設(shè)一關(guān)鍵的未知量為x,然后用含x的式子表示相關(guān)的量,找出之間的相等關(guān)系列方程、求解、作答,即設(shè)、列、解、答.
列一元一次方程解應(yīng)用題的五個步驟
1.審:仔細(xì)審題,確定已知量和未知量,找出它們之間的等量關(guān)系.
2.設(shè):設(shè)未知數(shù)(x),根據(jù)實際情況,可設(shè)直接未知數(shù)(問什么設(shè)什么),也可設(shè)間接未知數(shù).
3.列:根據(jù)等量關(guān)系列出方程.
4.解:解方程,求得未知數(shù)的值.
5.答:檢驗未知數(shù)的值是否正確,是否符合題意,完整地寫出答句.
15.專題:正方體相對兩個面上的文字
(1)對于此類問題一般方法是用紙按圖的樣子折疊后可以解決,或是在對展開圖理解的基礎(chǔ)上直接想象.
(2)從實物出發(fā),結(jié)合具體的問題,辨析幾何體的展開圖,通過結(jié)合立體圖形與平面圖形的轉(zhuǎn)化,建立空間觀念,是解決此類問題的關(guān)鍵.
(3)正方體的展開圖有11種情況,分析平面展開圖的各種情況后再認(rèn)真確定哪兩個面的對面.
16.直線、射線、線段
(1)直線、射線、線段的表示方法
①直線:用一個小寫字母表示,如:直線l,或用兩個大寫字母(直線上的)表示,如直線AB.
②射線:是直線的一部分,用一個小寫字母表示,如:射線l;用兩個大寫字母表示,端點在前,如:射線OA.注意:用兩個字母表示時,端點的字母放在前邊.
③線段:線段是直線的一部分,用一個小寫字母表示,如線段a;用兩個表示端點的字母表示,如:線段AB(或線段BA).
(2)點與直線的位置關(guān)系:
①點經(jīng)過直線,說明點在直線上;
②點不經(jīng)過直線,說明點在直線外.
17.兩點間的距離
(1)兩點間的距離
連接兩點間的線段的長度叫兩點間的距離.
(2)平面上任意兩點間都有一定距離,它指的是連接這兩點的線段的長度,學(xué)習(xí)此概念時,注意強(qiáng)調(diào)最后的兩個字“長度”,也就是說,它是一個量,有大小,區(qū)別于線段,線段是圖形.線段的長度才是兩點的距離.可以說畫線段,但不能說畫距離.
18.角的概念
(1)角的定義:有公共端點是兩條射線組成的圖形叫做角,其中這個公共端點是角的頂點,這兩條射線是角的兩條邊.
(2)角的表示方法:角可以用一個大寫字母表示,也可以用三個大寫字母表示.其中頂點字母要寫在中間,唯有在頂點處只有一個角的情況,才可用頂點處的一個字母來記這個角,否則分不清這個字母究竟表示哪個角.角還可以用一個希臘字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯?dāng)?shù)字(∠1,∠2…)表示.
(3)平角、周角:角也可以看作是由一條射線繞它的端點旋轉(zhuǎn)而形成的圖形,當(dāng)始邊與終邊成一條直線時形成平角,當(dāng)始 邊與終邊旋轉(zhuǎn)重合時,形成周角.
(4)角的度量:度、分、秒是常用的角的度量單位.1度=60分,即1°=60′,1分=60秒,即1′=60″.
19.角平分線的定義
(1)角平分線的定義
從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線叫做這個角的平分線.
①∠AOB是∠AOC和∠BOC的和,記作:∠AOB=∠AOC+∠BOC.∠AOC是∠AOB和∠BOC的差,記作:∠AOC=∠AOB﹣∠BOC.②若射線OC是∠AOB的三等分線,則∠AOB=3∠BOC或∠BOC=13∠AOB.
(2)度、分、秒的加減運算.在進(jìn)行度分秒的加減時,要將度與度,分與分,秒與秒相加減,分秒相加,逢60要進(jìn)位,相減時,要借1化60.
(3)度、分、秒的乘除運算.①乘法:度、分、秒分別相乘,結(jié)果逢60要進(jìn)位.②除法:度、分、秒分別去除,把每一次的余數(shù)化作下一級單位進(jìn)一步去除.
初一數(shù)學(xué)應(yīng)該如何學(xué)
1、知識內(nèi)容不同
(1)初中知識系統(tǒng)化,知識前后銜接度高,強(qiáng)調(diào)初一要打好基礎(chǔ)和連續(xù)學(xué)習(xí)的重要性。
(2)從形象思維到抽象思維的轉(zhuǎn)變,從“算數(shù)知識”到“代數(shù)思維”的跨越。
(3)初中的學(xué)習(xí)任務(wù)加重,科目增多,內(nèi)容難度加大,知識的嚴(yán)密性與邏輯性越來越強(qiáng),初中一節(jié)課等于小學(xué)三節(jié)課。
2、學(xué)習(xí)習(xí)慣改變
(1)小學(xué)重結(jié)果,初中重過程:強(qiáng)調(diào)小孩思路完整性和良好書寫習(xí)慣。
(2)初中重視記筆記:課程容量大,需要記下課堂重點,幫助復(fù)習(xí)理解。
3、競爭壓力增大
(1)優(yōu)秀學(xué)生進(jìn)入名校好班后,競爭壓力陡然增大,初一數(shù)學(xué)90分排在班里40名外。
(2)名校好班內(nèi)大部分學(xué)生已經(jīng)提前學(xué)習(xí),很多學(xué)生會在兩年內(nèi)學(xué)完初中內(nèi)容。
(3)初中階段孩子進(jìn)入青春期自我意識覺醒,認(rèn)知能力、學(xué)習(xí)動機(jī)、個性特征發(fā)生急劇變化。同學(xué)之間競爭激烈,承受小學(xué)所沒有的學(xué)習(xí)壓力。
4、升學(xué)壓力增大
中考錄取分?jǐn)?shù)線逐年提高,雖然初中是義務(wù)教育階段,但是要面臨人生第一大考,中考,學(xué)習(xí)的意義和小學(xué)截然不同,考一所好學(xué)校更不容易。
學(xué)數(shù)學(xué)的方法技巧有哪些
1、重視課堂的學(xué)習(xí)效率
課堂的學(xué)習(xí)效率非常重要,因為大多數(shù)的新知識和數(shù)學(xué)能力的培養(yǎng)都是在課堂上進(jìn)行的。所以在上課的時候要緊跟著老師的思路來開展思維。課后要及時復(fù)習(xí),不要把問題留到明天,有不懂的地方要及時請教老師或同學(xué)。課后還要注重基礎(chǔ)知識,要多記公式、定理,這都是學(xué)好數(shù)學(xué)的基礎(chǔ)和關(guān)鍵。
2、養(yǎng)成良好的做題習(xí)慣
要想學(xué)好數(shù)學(xué),多做題是必不可免的。但是多做題不代表要盲目做題,做題要有針對性,不能碰到哪道做哪道。做題要難易適中,通過做有代表性的題目,力爭舉一反三。數(shù)學(xué)的邏輯性很強(qiáng),需要縝密的思維,解題時有條理,在做題的過程中也要學(xué)會熟練的運用解題方法,掌握一些基本題型的解題規(guī)律。
3、以正確的心態(tài)面對考試
數(shù)學(xué)是一個邏輯性很強(qiáng)的學(xué)科,要有清醒的頭腦,數(shù)學(xué)運算過程中每個步驟都很重要,一旦哪個步驟漏掉了,這道題也就是錯了。因此,在做數(shù)學(xué)題的時候,最重要的是保持一顆平常心,遇到解不開的題目的時候不妨先跳過去,解下一道,不要因為一道題目就焦躁不安,這是考試時的大忌。
4、正確的對待平時的考試
平時考試主要的目的是檢驗一個階段所學(xué)的知識,從一定的作用上講可以起到查缺補(bǔ)漏的作用,也可以發(fā)現(xiàn)平時沒有掌握牢固的知識點。因此,盡管分?jǐn)?shù)很重要,但卻不應(yīng)該是我們?nèi)康年P(guān)注的焦點。要分析試卷,從試卷中找到自己學(xué)習(xí)中的漏洞才是最重要的。
所以不能因為一次分?jǐn)?shù)低了,就垂頭喪氣,就放棄對數(shù)學(xué)的學(xué)習(xí)。也不能因為一次考試的分?jǐn)?shù)高了,就沾沾自喜,認(rèn)為自己的數(shù)學(xué)水平不錯,從而生出驕傲的心。
初一數(shù)學(xué)知識點歸納相關(guān)文章:
★ 初一數(shù)學(xué)學(xué)習(xí)方法總結(jié)