高中數(shù)學解答題8個答題模板與做大題的方法
高中數(shù)學是很多同學高考道路上的攔路虎,很多同學一致回答:大題沒思路。其實掌握一些高中數(shù)學解答題的答題模板就好了,小編整理了相關資料,希望能幫助到您。
高中數(shù)學解答題8個答題模板
一. 三角變換與三角函數(shù)的性質(zhì)問題
1.解題路線圖
?、俨煌腔?/p>
②降冪擴角
?、刍痜(x)=Asin(ωx+φ)+h
④結合性質(zhì)求解。
2.構建答題模板
①化簡:三角函數(shù)式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為“一角、一次、一函數(shù)”的形式。
?、谡w代換:將ωx+φ看作一個整體,利用y=sin x,y=cos x的性質(zhì)確定條件。
?、矍蠼猓豪?omega;x+φ的范圍求條件解得函數(shù)y=Asin(ωx+φ)+h的性質(zhì),寫出結果。
?、芊此迹悍此蓟仡?,查看關鍵點,易錯點,對結果進行估算,檢查規(guī)范性。
二. 解三角形問題
1.解題路線圖
(1) ①化簡變形;②用余弦定理轉化為邊的關系;③變形證明。
(2) ①用余弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。
2.構建答題模板
?、俣l件:即確定三角形中的已知和所求,在圖形中標注出來,然后確定轉化的方向。
?、诙üぞ撸杭锤鶕?jù)條件和所求,合理選擇轉化的工具,實施邊角之間的互化。
?、矍蠼Y果。
?、茉俜此迹涸趯嵤┻吔腔セ臅r候應注意轉化的方向,一般有兩種思路:一是全部轉化為邊之間的關系;二是全部轉化為角之間的關系,然后進行恒等變形。
三. 數(shù)列的通項、求和問題
1.解題路線圖
①先求某一項,或者找到數(shù)列的關系式。
?、谇笸椆健?/p>
?、矍髷?shù)列和通式。
2.構建答題模板
?、僬疫f推:根據(jù)已知條件確定數(shù)列相鄰兩項之間的關系,即找數(shù)列的遞推公式。
?、谇笸棧焊鶕?jù)數(shù)列遞推公式轉化為等差或等比數(shù)列求通項公式,或利用累加法或累乘法求通項公式。
?、鄱ǚ椒ǎ焊鶕?jù)數(shù)列表達式的結構特征確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。
?、軐懖襟E:規(guī)范寫出求和步驟。
?、菰俜此迹悍此蓟仡櫍榭搓P鍵點、易錯點及解題規(guī)范。
四. 利用空間向量求角問題
1.解題路線圖
①建立坐標系,并用坐標來表示向量。
?、诳臻g向量的坐標運算。
?、塾孟蛄抗ぞ咔罂臻g的角和距離。
2.構建答題模板
①找垂直:找出(或作出)具有公共交點的三條兩兩垂直的直線。
?、趯懽鴺耍航⒖臻g直角坐標系,寫出特征點坐標。
?、矍笙蛄浚呵笾本€的方向向量或平面的法向量。
?、芮髪A角:計算向量的夾角。
?、莸媒Y論:得到所求兩個平面所成的角或直線和平面所成的角。
五. 圓錐曲線中的范圍問題
1.解題路線圖
?、僭O方程。
?、诮庀禂?shù)。
?、鄣媒Y論。
2.構建答題模板
?、偬彡P系:從題設條件中提取不等關系式。
?、谡液瘮?shù):用一個變量表示目標變量,代入不等關系式。
?、鄣梅秶和ㄟ^求解含目標變量的不等式,得所求參數(shù)的范圍。
?、茉倩仡櫍鹤⒁饽繕俗兞康姆秶茴}中其他因素的制約。
六. 解析幾何中的探索性問題
1.解題路線圖
?、僖话阆燃僭O這種情況成立(點存在、直線存在、位置關系存在等)
?、趯⑸厦娴募僭O代入已知條件求解。
③得出結論。
2.構建答題模板
①先假定:假設結論成立。
?、谠偻评恚阂约僭O結論成立為條件,進行推理求解。
③下結論:若推出合理結果,經(jīng)驗證成立則肯。 定假設;若推出矛盾則否定假設。
?、茉倩仡櫍翰榭搓P鍵點,易錯點(特殊情況、隱含條件等),審視解題規(guī)范性。
七. 離散型隨機變量的均值與方差
1.解題路線圖
(1)①標記事件;②對事件分解;③計算概率。
(2)①確定ξ取值;②計算概率;③得分布列;④求數(shù)學期望。
2.構建答題模板
?、俣ㄔ焊鶕?jù)已知條件確定離散型隨機變量的取值。
?、诙ㄐ裕好鞔_每個隨機變量取值所對應的事件。
?、鄱ㄐ停捍_定事件的概率模型和計算公式。
?、苡嬎悖河嬎汶S機變量取每一個值的概率。
⑤列表:列出分布列。
?、耷蠼猓焊鶕?jù)均值、方差公式求解其值。
八. 函數(shù)的單調(diào)性、極值、最值問題
1.解題路線圖
(1)①先對函數(shù)求導;②計算出某一點的斜率;③得出切線方程。
(2)①先對函數(shù)求導;②談論導數(shù)的正負性;③列表觀察原函數(shù)值;④得到原函數(shù)的單調(diào)區(qū)間和極值。
2.構建答題模板
①求導數(shù):求f(x)的導數(shù)f′(x)。(注意f(x)的定義域)
?、诮夥匠蹋航鈌′(x)=0,得方程的根。
?、哿斜砀瘢豪胒′(x)=0的根將f(x)定義域分成若干個小開區(qū)間,并列出表格。
④得結論:從表格觀察f(x)的單調(diào)性、極值、最值等。
?、菰倩仡櫍簩π栌懻摳拇笮栴}要特殊注意,另外觀察f(x)的間斷點及步驟規(guī)范性。
遇到大題怎么做?
1 做——常規(guī)題目直接做
在理解題意后,立即思考問題屬于哪一章節(jié)?與這一章節(jié)的哪個類型比較接近?解決這個類型有哪些方法?哪個方法可以首先拿來試用?這樣一想,做題的方向就有了。
2 套——陌生題目往熟套
高考題目一般而言,很少會出怪題、偏題。很多題目乍一看是新題型,沒見過;但是換個角度思考一下;或者試著往下面運算兩步、做一下變形,就會回到你熟悉的套路上去。因此遇到?jīng)]做過的題型,不要慌張,嘗試往自己做過的題目上套。
3 推——正面難解反向推
后面的大題,尤其是一些證明題,不少同學會發(fā)現(xiàn)正面推到一半推不下去了。這時候不妨嘗試從結果開始反向推理證明。或者想一想,想要得出結果,需要哪些已知條件,這些條件能夠通過哪些方式獲得。從兩頭入手,向中間擠壓、合攏,盡可能完成題目。