六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學習啦>學習方法>小學學習方法>小考輔導>

小學數學各年級知識點總結大全

時間: 舒淇4599 分享

數學作為一門基礎學科,其目的是為了培養(yǎng)學生的理性思維,養(yǎng)成嚴謹的思考的習慣,對一個人的以后工作起到至關重要的作用,下面小編為大家?guī)硇W數學各年級知識點總結大全,希望大家喜歡!

小學數學各年級知識點總結

1.圓的概念:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。

2.圓的組成:圓心:圓任意兩條對稱軸的交點為圓心。注:圓心一般符號O表示。直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。

圓的直徑和半徑都有無數條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=d/2。

注:圓的半徑或直徑決定圓的大小,圓心決定圓的位置。

3.圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。

4.圓周率:圓的周長與直徑的比值叫做圓周率。

圓的周長除以直徑的商是一個固定的數,把它叫做圓周率,它是一個無限不循環(huán)小數(無理數),用字母π表示。計算時,通常取它的近似值,π≈3.14。

5.圓的面積公式:圓所占平面的大小叫做圓的面積。用字母S表示。

6.周長計算公式

(1)已知直徑:C=πd=2πr

(2)半圓的周長:1/2周長+直徑

7.面積計算公式:

(1)已知半徑:S=πr2

(2)已知直徑:S=π(d/2)2

(3)已知周長:S=π[c÷(2π)]2

小學數學五年級必考知識點梳理

一、學習目標:

1.探索小數乘法、除法的計算方法,能正確進行筆算,并能對其中的算理做出合理的解釋;

2.會用“四舍五入”法截取積是小數的近似值;培養(yǎng)從不同角度觀察,分析事物的能力;

3.理解用字母表示數的意義和作用;

4.理解簡易方程的意思及其解法;

5.在理解的基礎上掌握平行四邊形面積的計算公式,并會運用公式正確地計算平行四邊形的面積。

二、學習難點:

1.能正確進行乘號的簡寫,略寫;小數乘法的計算法則;

2.小數乘法中積的小數位數和小數點的定位,乘得的積小數位數不夠的,要在前面用0補足;

3.除數是整數的小數除法的計算方法;理解商的小數點要與被除數的小數點對齊的道理;

4.構建初步的空間想象力;

5.用字母表示數的意義和作用;

6.多邊形面積的計算。

三、知識點概念總結:

1.小數乘整數的意義:求幾個相同加數和的簡便運算;一個數乘純小數的意義是求這個數的十分之幾、百分之幾、千分之幾……是多少。

2.小數乘法法則:先按照整數乘法的計算法則算出積,再看因數中共有幾位小數,就從積的右邊起數出幾位,點上小數點;如果位數不夠,就用“0”補足。

3.小數除法:小數除法的意義與整數除法的意義相同,就是已知兩個因數的積與其中一個因數,求另一個因數的運算。

4.除數是整數的小數除法計算法則:先按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有余數,就在余數后面添“0”,再繼續(xù)除。

5.除數是小數的除法計算法則:先移動除數的小數點,使它變成整數,除數的小數點也向右移動幾位(位數不夠的補“0”),然后按照除數是整數的除法法則進行計算。

6.積的近似數:四舍五入是一種精確度的計數保留法,與其他方法本質相同。但特殊之處在于,采用四舍五入,能使被保留部分的與實際值差值不超過最后一位數量級的二分之一:假如0~9等概率出現的話,對大量的被保留數據,這種保留法的誤差總和是最小的。

7.數的互化:

(1)小數化成分數

原來有幾位小數,就在1的后面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。

(2)分數化成小數

用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。

(3)化有限小數

一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5以外的質因數,這個分數就不能化成有限小數。

(4)小數化成百分數

只要把小數點向右移動兩位,同時在后面添上百分號。

(5)百分數化成小數

把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。

(6)分數化成百分數

通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。

(7)百分數化成小數

先把百分數改寫成分數,能約分的要約成最簡分數。

8.小數的分類:

(1)有限小數:小數部分的數位是有限的小數,叫做有限小數。例如:41.7、25.3、0.23都是有限小數。

(2)無限小數:小數部分的數位是無限的小數,叫做無限小數。例如:4.33……3.1415926……

(3)無限不循環(huán)小數:一個數的小數部分,數字排列無規(guī)律且位數無限,這樣的小數叫做無限不循環(huán)小數。

(4)循環(huán)小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環(huán)小數。例如:3.555……0.0333……12.109109……;一個循環(huán)小數的小數部分,依次不斷重復出現的數字叫做這個循環(huán)小數的循環(huán)節(jié)。例如:3.99……的循環(huán)節(jié)是“9”,0.5454……的循環(huán)節(jié)是“54”。

9.循環(huán)節(jié):如果無限小數的小數點后,從某一位起向右進行到某一位止的一節(jié)數字循環(huán)出現,首尾銜接,稱這種小數為循環(huán)小數,這一節(jié)數字稱為循環(huán)節(jié)。把循環(huán)小數寫成個別項與一個無窮等比數列的和的形式后可以化成一個分數。

10.簡易方程:方程ax±b=c(a,b,c是常數)叫做簡易方程。

11.方程:含有未知數的等式叫做方程。(注意方程是等式,又含有未知數,兩者缺一不可)

方程和算術式不同。算術式是一個式子,它由運算符號和已知數組成,它表示未知數。方程是一個等式,在方程里的未知數可以參加運算,并且只有當未知數為特定的數值時,方程才成立。

12.方程的解:使方程左右兩邊相等的未知數的值,叫做方程的解。如果兩個方程的解相同,那么這兩個方程叫做同解方程。

13.方程的同解原理:

(1)方程的兩邊都加或減同一個數或同一個等式所得的方程與原方程是同解方程。

(2)方程的兩邊同乘或同除同一個不為0的數所得的方程與原方程是同解方程。

14.解方程:解方程,求方程的解的過程叫做解方程。

15.列方程解應用題的意義:用方程式去解答應用題求得應用題的未知量的方法。

16.列方程解答應用題的步驟:

(1)弄清題意,確定未知數并用x表示;

(2)找出題中的數量之間的相等關系;

(3)列方程,解方程;

(4)檢查或驗算,寫出答案。

17.列方程解應用題的方法:

(1)綜合法

先把應用題中已知數(量)和所設未知數(量)列成有關的代數式,再找出它們之間的等量關系,進而列出方程。這是從部分到整體的一種思維過程,其思考方向是從已知到未知。

(2)分析法

先找出等量關系,再根據具體建立等量關系的需要,把應用題中已知數(量)和所設的未知數(量)列成有關的代數式進而列出方程。這是從整體到部分的一種思維過程,其思考方向是從未知到已知。

18.列方程解應用題的范圍:

小學范圍內常用方程解的應用題:

(1)一般應用題;

(2)和倍、差倍問題;

(3)幾何形體的周長、面積、體積計算;

(4)分數、百分數應用題;

(5)比和比例應用題。

19.平行四邊形的面積公式:

底×高(推導方法如圖);如用“h”表示高,“a”表示底,“S”表示平行四邊形面積,則S平行四邊形=ah

20.三角形面積公式:

S△=1/2_ah(a是三角形的底,h是底所對應的高)

21.梯形面積公式:

(1)梯形的面積公式:(上底+下底)×高÷2.

用字母表示:(a+b)×h÷2

(2)另一計算公式:中位線×高

用字母表示:l·h

(3)對角線互相垂直的梯形:對角線×對角線÷2.

擴展資料:

1.小數分類

(1)純小數:整數部分是零的小數,叫做純小數。例如:0.25、0.368都是純小數。

(2)帶小數:整數部分不是零的小數,叫做帶小數。例如:3.25、5.26都是帶小數。

(3)純循環(huán)小數:循環(huán)節(jié)從小數部分第一位開始的,叫做純循環(huán)小數。例如:3.111……0.5656……

(4)混循環(huán)小數:循環(huán)節(jié)不是從小數部分第一位開始的,叫做混循環(huán)小數。3.1222……0.03333……寫循環(huán)小數的時候,為了簡便,小數的循環(huán)部分只需寫出一個循環(huán)節(jié),并在這個循環(huán)節(jié)的首、末位數字上各點一個圓點。如果循環(huán)節(jié)只有一個數字,就只在它的上面點一個點。

2.循環(huán)節(jié)的表示方法:

小數化分數分成兩類。

一類:純循環(huán)小數化分數,循環(huán)節(jié)做分子;連寫幾個九作分母,循環(huán)節(jié)有幾位寫幾個九。

另一類:混循環(huán)小數化分數(問題就是這類的),小數部分減去不循環(huán)的數字作分子;連寫幾個9再緊接著連寫幾個0作分母,循環(huán)節(jié)是幾個數就寫幾個9,不循環(huán)(小數部分)的數是幾個就寫幾個0.

3.平行四邊形的面積:

平行四邊形的面積等于兩組鄰邊的積乘以夾角的正弦值;

4.三角形的面積

(1)S△=1/2_ah(a是三角形的底,h是底所對應的高)

(2)S△=1/2acsinB=1/2bcsinA=1/2absinC(三個角為∠A∠B∠C,對邊分別為a,b,c,參見三角函數)

(3)S△=abc/(4R)(R是外接圓半徑)

(4)S△=[(a+b+c)r]/2(r是內切圓半徑)

(5)S△=c2sinAsinB/2sin(A+B)

小學數學一年級基礎知識點

第一單元:準備課

1、數一數

數數:數數時,按一定的順序數,從1開始,數到最后一個物體所對應的那個數,即最后數到幾,就是這種物體的總個數。

2、比多少

同樣多:當兩種物體一一對應后,都沒有剩余時,就說這兩種物體的數量同樣多。

比多少:當兩種物體一一對應后,其中一種物體有剩余,有剩余的那種物體多,沒有剩余的那種物體少。

比較兩種物體的多或少時,可以用一一對應的方法。

第二單元:位置

1、認識上、下

體會上、下的含義:從兩個物體的位置理解:上是指在高處的物體,下是指在低處的物體。

2、認識前、后

體會前、后的含義:一般指面對的方向就是前,背對的方向就是后。

同一物體,相對于不同的參照物,前后位置關系也會發(fā)生變化。

從而得出:確定兩個以上物體的前后位置關系時,要找準參照物,選擇的參照物不同,相對的前后位置關系也會發(fā)生變化。

3、認識左、右

以自己的左手、右手所在的位置為標準,確定左邊和右邊。右手所在的一邊為右邊,左手所在的一邊為左邊。

要點提示:在確定左右時,除特殊要求,一般以觀察者的左右為準。

第三單元:1-5的認識和加減法

一、1--5的認識

1、1—5各數的含義:每個數都可以表示不同物體的數量。有幾個物體就用幾來表示。

2、1—5各數的數序

從前往后數:1、2、3、4、5.

從后往前數:5、4、3、2、1.

3、1—5各數的寫法:根據每個數字的形狀,按數字在田字格中的位置,認真、工整地進行書寫。

二、比大小

1、前面的數等于后面的數,用“=”表示,即3=3,讀作3等于3。前面的數大于后面的數,用“>”表示,即3>2,讀作3大于2。前面的數小于后面的數,用“<”表示,即3<4,讀作3小于4。

2、填“>”或“<”時,開口對大數,尖角對小數。

三、第幾

1、確定物體的排列順序時,先確定數數的方向,然后從1開始點數,數到幾,它的順序就是“第幾”。第幾指的是其中的某一個。

2、區(qū)分“幾個”和“第幾”

“幾個”表示物體的多少,而“第幾”只表示其中的一個物體。

四、分與合

數的組成:一個數(1除外)分成幾和幾,先把這個數分成1和幾,依次分到幾和1為止。例如:5的組成有1和4,2和3,3和2,4和1.

把一個數分成幾和幾時,要有序地進行分解,防止重復或遺漏。

五、加法

1、加法的含義:把兩部分合在一起,求一共有多少,用加法計算。

2、加法的計算方法:計算5以內數的加法,可以采用點數、接著數、數的組成等方法。其中用數的組成計算是最常用的方法。

六、減法

1、減法的含義:從總數里去掉(減掉)一部分,求還剩多少用減法計算。

2、減法的計算方法:計算減法時,可以用倒著數、數的分成、想加算減的方法來計算。

七、0

1、0的意義:0表示一個物體也沒有,也表示起點。

2、0的讀法:0讀作:零

3、0的寫法:寫0時,要從上到下,從左到右,起筆處和收筆處要相連,并且要寫圓滑,不能有棱角。

4、0的加、減法:任何數與0相加都得這個數,任何數與0相減都得這個數,相同的兩個數相減等于0.

如:0+8=89-0=94-4=0

第四單元:認識圖形

1、長方體的特征:長長方方的,有6個平平的面,面有大有小。

2、正方體的特征:四四方方的,有6個平平的面,面的大小一樣。

3、圓柱的特征:直直的,上下一樣粗,上下兩個圓面大小一樣。放在桌子上能滾動。立在桌子上不能滾動。

4、球的特征:圓圓的,很光滑,它的表面是曲面。放在桌子上能向任意方向滾動。

5、立體圖形的拼擺:用長方體或正方體能拼組出不同形狀的立體圖形,在拼好的立體圖形中,有一些部位從一個角度是看不到的,要從多個角度去觀察。用小圓柱可以拼成更大的圓柱。

第五單元:6-10的認識和加減法

一、6—10的認識:

1、數數:根據物體的個數,可以用6—10各數來表示。數數時,從前往后數也就是從小往大數。

2、10以內數的順序:

(1)從前往后數:0、1、2、3、4、5、6、7、8、9、10。

(2)從后往前數:10、9、8、7、6、5、4、3、2、1、0。

3、比較大?。喊凑諗档捻樞?,后面的數總是比前面的數大。

4、序數含義:用來表示物體的次序,即第幾個。

5、數的組成:一個數(0、1除外)可以由兩個比它小的數組成。如:10由9和1組成。

記憶數的組成時,可由一組數想到調換位置的另一組。

二、6—10的加減法

1、10以內加減法的計算方法:根據數的組成來計算。

2、一圖四式:根據一副圖的思考角度不同,可寫出兩道加法算式和兩道減法算式。

3、“大括號”下面有問號是求把兩部分合在一起,用加法計算?!按罄ㄌ枴鄙厦娴囊粋扔袉柼柺乔髲目倲抵腥サ粢徊糠?,還剩多少,用減法計算。

三、連加連減

1、連加的計算方法:計算連加時,按從左到右的順序進行,先算前兩個數的和,再與第三個數相加。

2、連減的計算方法:計算連減時,按從左到右的順序進行,先算前兩個數的差,再用所得的數減去第三個數。

四、加減混合

加減混合的計算方法:計算時,按從左到右的順序進行,先把前兩個數相加(或相減),再用得數與第三個數相減(或相加)。

第六單元:11-20各數的認識

1、數數:根據物體的個數,可以用11—20各數來表示。

2、數的順序:11—20各數的順序是:11、12、13、14、15、16、17、18、19、20

3、比較大?。嚎梢愿鶕档捻樞虮容^,后面的數總比前面的數大,或者利用數的組成進行比較。

4、11—20各數的組成:都是由1個十和幾個一組成的,20由2個十組成的。如:1個十和5個一組成15。

5、數位:從右邊起第一位是個位,第二位是十位。

6、11—20各數的讀法:從高位讀起,十位上是幾就讀幾十,個位上是幾就讀幾。20的讀法,20讀作:二十。

7、寫數:寫數時,對照數位寫,有1個十就在十位上寫1,有2個十就在十位上寫2.有幾個一,就在個位上寫幾,個位上一個單位也沒有,就寫0占位。

8、十加幾、十幾加幾與相應的減法

(1)、10加幾和相應的減法的計算方法:10加幾得十幾,十幾減幾得十,十幾減十得幾。

如:10+5=1517-7=1018-10=8

(2)、十幾加幾和相應的減法的計算方法:計算十幾加幾和相應的減法時,可以利用數的組成來計算,也可以把個位上的數相加或相減,再加整十數。

(3)、加減法的各部分名稱:

在加法算式中,加號前面和后面的數叫加數,等號后面的數叫和。

在減法算式中,減號前面的數叫被減數,減號后面的數叫減數,等號后面的數叫差。

9、解決問題

求兩個數之間有幾個數,可以用數數法,也可以用畫圖法。還可以用計算法(用大數減小數再減1的方法來計算)。

第七單元:認識鐘表

1、認識鐘面

鐘面:鐘面上有12個數,有時針和分針。

分針:鐘面上又細又長的指針叫分針。

時針:鐘面上又粗又短的指針叫時針。

2、鐘表的種類:日常生活中的鐘表一般分兩種,一種:掛鐘,鐘面上有12個數,分針和時針。另一種:電子表,表面上有兩個點“:”,“:”的左邊和右邊都有數。

3、認識整時:分針指向12,時針指向幾就是幾時;電子表上,“:”的右邊是“00”時表示整時,“:”的左邊是幾就是幾時。

4、整時的寫法:整時的寫法有兩種:寫成幾時或電子表數字的形式。如:8時或8:00

第八單元:20以內的進位加法

1、9加幾計算方法:計算9加幾的進位加法,可以采用“點數”“接著數”“湊十法”等方法進行計算,其中“湊十法”比較簡便。

利用“湊十法”計算9加幾時,把9湊成10需要1,就把較小數拆成1和幾,10加幾就得十幾。

2、8、7、6加幾的計算方法:(1)點數;(2)接著數;(3)湊十法。可以“拆大數、湊小數”,也可以“拆小數、湊大數”。

3、5、4、3、2加幾的計算方法:(1)“拆大數、湊小數”。(2)“拆小數、湊大數”。

4、解決問題

(1)解決問題時,可以從不同的角度觀察、分析、從而找到不同的解題方法。

(2)求總數的實際問題,用加法計算。

小學數學各年級知識點總結大全相關文章

小學一年級數學重點知識點總結

人教版小學數學三年級知識點總結

小學一年級數學的知識點歸納

小學四年級數學知識點歸納

小學三年級數學的知識點總結

小學二年級數學知識點整理

小學四年級數學基本知識點

四年級數學知識點總結大全

小學五年級數學知識點整理

六年級數學知識點歸納整理

小學數學各年級知識點總結大全

數學作為一門基礎學科,其目的是為了培養(yǎng)學生的理性思維,養(yǎng)成嚴謹的思考的習慣,對一個人的以后工作起到至關重要的作用,下面小編為大家?guī)硇W數學各年級知識點總結大全,希望大家喜歡!小學數學各年級知識點總結
推薦度:
點擊下載文檔文檔為doc格式
1536607