六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 小學(xué)學(xué)習(xí)方法 > 小考輔導(dǎo) >

小升初必考的13類典型應(yīng)用題

時(shí)間: 於寶21274 分享

  小考可以說(shuō)是小學(xué)中最重要的考試了,其成績(jī)覺得了孩子以后的晉升走向,下面就是小編給大家?guī)?lái)的小升初必考的13類典型應(yīng)用題,希望能幫助到大家!

  小升初必考的13類典型應(yīng)用題

  1、平均數(shù)問(wèn)題:平均數(shù)是等分除法的發(fā)展。

  解題關(guān)鍵:在于確定總數(shù)量和與之相對(duì)應(yīng)的總份數(shù)。

  算術(shù)平均數(shù):已知幾個(gè)不相等的同類量和與之相對(duì)應(yīng)的份數(shù),求平均每份是多少。數(shù)量關(guān)系式:數(shù)量之和÷數(shù)量的個(gè)數(shù)=算術(shù)平均數(shù)。

  加權(quán)平均數(shù):已知兩個(gè)以上若干份的平均數(shù),求總平均數(shù)是多少。

  數(shù)量關(guān)系式 (部分平均數(shù)×權(quán)數(shù))的總和÷(權(quán)數(shù)的和)=加權(quán)平均數(shù)。

  差額平均數(shù):是把各個(gè)大于或小于標(biāo)準(zhǔn)數(shù)的部分之和被總份數(shù)均分,求的是標(biāo)準(zhǔn)數(shù)與各數(shù)相差之和的平均數(shù)。

  數(shù)量關(guān)系式:(大數(shù)-小數(shù))÷2=小數(shù)應(yīng)得數(shù) 最大數(shù)與各數(shù)之差的和÷總份數(shù)=最大數(shù)應(yīng)給數(shù) 最大數(shù)與個(gè)數(shù)之差的和÷總份數(shù)=最小數(shù)應(yīng)得數(shù)。

  例:一輛汽車以每小時(shí) 100 千米 的速度從甲地開往乙地,又以每小時(shí) 60 千米的速度從乙地開往甲地。求這輛車的平均速度。

  分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設(shè)為“ 1 ”,則汽車行駛的總路程為“ 2 ”,從甲地到乙地的速度為 100 ,所用的時(shí)間為 ,汽車從乙地到甲地速度為 60 千米 ,所用的時(shí)間是 ,汽車共行的時(shí)間為 + = , 汽車的平均速度為 2 ÷ =75 (千米)

  2、歸一問(wèn)題:已知相互關(guān)聯(lián)的兩個(gè)量,其中一種量改變,另一種量也隨之而改變,其變化的規(guī)律是相同的,這種問(wèn)題稱之為歸一問(wèn)題。

  根據(jù)求“單一量”的步驟的多少,歸一問(wèn)題可以分為一次歸一問(wèn)題,兩次歸一問(wèn)題。

  根據(jù)球癡單一量之后,解題采用乘法還是除法,歸一問(wèn)題可以分為正歸一問(wèn)題,反歸一問(wèn)題。

  一次歸一問(wèn)題,用一步運(yùn)算就能求出“單一量”的歸一問(wèn)題。又稱“單歸一?!?/p>

  兩次歸一問(wèn)題,用兩步運(yùn)算就能求出“單一量”的歸一問(wèn)題。又稱“雙歸一?!?/p>

  正歸一問(wèn)題:用等分除法求出“單一量”之后,再用乘法計(jì)算結(jié)果的歸一問(wèn)題。

  反歸一問(wèn)題:用等分除法求出“單一量”之后,再用除法計(jì)算結(jié)果的歸一問(wèn)題。

  解題關(guān)鍵:從已知的一組對(duì)應(yīng)量中用等分除法求出一份的數(shù)量(單一量),然后以它為標(biāo)準(zhǔn),根據(jù)題目的要求算出結(jié)果。

  數(shù)量關(guān)系式:?jiǎn)我涣?times;份數(shù)=總數(shù)量(正歸一)

  總數(shù)量÷單一量=份數(shù)(反歸一)

  例 一個(gè)織布工人,在七月份織布 4774 米 , 照這樣計(jì)算,織布 6930 米 ,需要多少天?

  分析:必須先求出平均每天織布多少米,就是單一量。693 0 ÷( 477 4 ÷ 31 ) =45 (天)

  3、歸總問(wèn)題:是已知單位數(shù)量和計(jì)量單位數(shù)量的個(gè)數(shù),以及不同的單位數(shù)量(或單位數(shù)量的個(gè)數(shù)),通過(guò)求總數(shù)量求得單位數(shù)量的個(gè)數(shù)(或單位數(shù)量)。

  特點(diǎn):兩種相關(guān)聯(lián)的量,其中一種量變化,另一種量也跟著變化,不過(guò)變化的規(guī)律相反,和反比例算法彼此相通。

  數(shù)量關(guān)系式:?jiǎn)挝粩?shù)量×單位個(gè)數(shù)÷另一個(gè)單位數(shù)量 = 另一個(gè)單位數(shù)量 單位數(shù)量×單位個(gè)數(shù)÷另一個(gè)單位數(shù)量= 另一個(gè)單位數(shù)量。

  例 修一條水渠,原計(jì)劃每天修 800 米 , 6 天修完。實(shí)際 4 天修完,每天修了多少米?

  分析:因?yàn)橐蟪雒刻煨薜拈L(zhǎng)度,就必須先求出水渠的長(zhǎng)度。所以也把這類應(yīng)用題叫做“歸總問(wèn)題”。不同之處是“歸一”先求出單一量,再求總量,歸總問(wèn)題是先求出總量,再求單一量。80 0 × 6 ÷4=1200 (米)

  4、和差問(wèn)題:已知大小兩個(gè)數(shù)的和,以及他們的差,求這兩個(gè)數(shù)各是多少的應(yīng)用題叫做和差問(wèn)題。

  解題關(guān)鍵:是把大小兩個(gè)數(shù)的和轉(zhuǎn)化成兩個(gè)大數(shù)的和(或兩個(gè)小數(shù)的和),然后再求另一個(gè)數(shù)。

  解題規(guī)律:(和+差)÷2 = 大數(shù) 大數(shù)-差=小數(shù)

  (和-差)÷2=小數(shù) 和-小數(shù)= 大數(shù)

  例 某加工廠甲班和乙班共有工人 94 人,因工作需要臨時(shí)從乙班調(diào) 46 人到甲班工作,這時(shí)乙班比甲班人數(shù)少 12 人,求原來(lái)甲班和乙班各有多少人?

  分析:從乙班調(diào) 46 人到甲班,對(duì)于總數(shù)沒有變化,現(xiàn)在把乙數(shù)轉(zhuǎn)化成 2 個(gè)乙班,即 9 4 - 12 ,由此得到現(xiàn)在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在調(diào)出 46 人之前應(yīng)該為 41+46=87 (人),甲班為 9 4 - 87=7 (人)

  5、和倍問(wèn)題:已知兩個(gè)數(shù)的和及它們之間的倍數(shù) 關(guān)系,求兩個(gè)數(shù)各是多少的應(yīng)用題,叫做和倍問(wèn)題。

  解題關(guān)鍵:找準(zhǔn)標(biāo)準(zhǔn)數(shù)(即1倍數(shù))一般說(shuō)來(lái),題中說(shuō)是“誰(shuí)”的幾倍,把誰(shuí)就確定為標(biāo)準(zhǔn)數(shù)。求出倍數(shù)和之后,再求出標(biāo)準(zhǔn)的數(shù)量是多少。根據(jù)另一個(gè)數(shù)(也可能是幾個(gè)數(shù))與標(biāo)準(zhǔn)數(shù)的倍數(shù)關(guān)系,再去求另一個(gè)數(shù)(或幾個(gè)數(shù))的數(shù)量。

  解題規(guī)律:和÷倍數(shù)和=標(biāo)準(zhǔn)數(shù) 標(biāo)準(zhǔn)數(shù)×倍數(shù)=另一個(gè)數(shù)

  例:汽車運(yùn)輸場(chǎng)有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運(yùn)輸場(chǎng)有大貨車和小汽車各有多少輛?

  分析:大貨車比小貨車的 5 倍還多 7 輛,這 7 輛也在總數(shù) 115 輛內(nèi),為了使總數(shù)與( 5+1 )倍對(duì)應(yīng),總車輛數(shù)應(yīng)( 115-7 )輛 。

  列式為( 115-7 )÷( 5+1 ) =18 (輛), 18 × 5+7=97 (輛)

  6、差倍問(wèn)題:已知兩個(gè)數(shù)的差,及兩個(gè)數(shù)的倍數(shù)關(guān)系,求兩個(gè)數(shù)各是多少的應(yīng)用題。

  解題規(guī)律:兩個(gè)數(shù)的差÷(倍數(shù)-1 )= 標(biāo)準(zhǔn)數(shù) 標(biāo)準(zhǔn)數(shù)×倍數(shù)=另一個(gè)數(shù)。

  例 甲乙兩根繩子,甲繩長(zhǎng) 63 米 ,乙繩長(zhǎng) 29 米 ,兩根繩剪去同樣的長(zhǎng)度,結(jié)果甲所剩的長(zhǎng)度是乙繩 長(zhǎng)的 3 倍,甲乙兩繩所剩長(zhǎng)度各多少米?各減去多少米?

  分析:兩根繩子剪去相同的一段,長(zhǎng)度差沒變,甲繩所剩的長(zhǎng)度是乙繩的 3 倍,實(shí)比乙繩多( 3-1 )倍,以乙繩的長(zhǎng)度為標(biāo)準(zhǔn)數(shù)。列式( 63-29 )÷( 3-1 ) =17 (米)…乙繩剩下的長(zhǎng)度, 17 × 3=51 (米)…甲繩剩下的長(zhǎng)度, 29-17=12 (米)…剪去的長(zhǎng)度。

  7、行程問(wèn)題:關(guān)于走路、行車等問(wèn)題,一般都是計(jì)算路程、時(shí)間、速度,叫做行程問(wèn)題。解答這類問(wèn)題首先要搞清楚速度、時(shí)間、路程、方向、杜速度和、速度差等概念,了解他們之間的關(guān)系,再根據(jù)這類問(wèn)題的規(guī)律解答。

  解題關(guān)鍵及規(guī)律:

  同時(shí)同地相背而行:路程=速度和×時(shí)間。

  同時(shí)相向而行:相遇時(shí)間=速度和×時(shí)間

  同時(shí)同向而行(速度慢的在前,快的在后):追及時(shí)間=路程速度差。

  同時(shí)同地同向而行(速度慢的在后,快的在前):路程=速度差×時(shí)間。

  例 甲在乙的后面 28 千米 ,兩人同時(shí)同向而行,甲每小時(shí)行 16 千米 ,乙每小時(shí)行 9 千米 ,甲幾小時(shí)追上乙?

  分析:甲每小時(shí)比乙多行( 16-9 )千米,也就是甲每小時(shí)可以追近乙( 16-9 )千米,這是速度差。

  已知甲在乙的后面 28 千米 (追擊路程), 28 千米 里包含著幾個(gè)( 16-9 )千米,也就是追擊所需要的時(shí)間。列式 2 8 ÷ ( 16-9 ) =4 (小時(shí))

  8、流水問(wèn)題:一般是研究船在“流水”中航行的問(wèn)題。它是行程問(wèn)題中比較特殊的一種類型,它也是一種和差問(wèn)題。它的特點(diǎn)主要是考慮水速在逆行和順行中的不同作用。

  船速:船在靜水中航行的速度。

  水速:水流動(dòng)的速度。

  順?biāo)俣龋捍樍骱叫械乃俣取?/p>

  逆水速度:船逆流航行的速度。

  順?biāo)?船速+水速

  逆速=船速-水速

  解題關(guān)鍵:因?yàn)轫樍魉俣仁谴倥c水速的和,逆流速度是船速與水速的差,所以流水問(wèn)題當(dāng)作和差問(wèn)題解答。解題時(shí)要以水流為線索。

  解題規(guī)律:船行速度=(順?biāo)俣? 逆流速度)÷2

  流水速度=(順流速度逆流速度)÷2

  路程=順流速度× 順流航行所需時(shí)間

  路程=逆流速度×逆流航行所需時(shí)間

  例 一只輪船從甲地開往乙地順?biāo)?,每小時(shí)行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比順?biāo)嘈?2 小時(shí),已知水速每小時(shí) 4 千米。求甲乙兩地相距多少千米?

  分析:此題必須先知道順?biāo)乃俣群晚標(biāo)枰臅r(shí)間,或者逆水速度和逆水的時(shí)間。已知順?biāo)俣群退?速度,因此不難算出逆水的速度,但順?biāo)玫臅r(shí)間,逆水所用的時(shí)間不知道,只知道順?biāo)饶嫠儆?2 小時(shí),抓住這一點(diǎn),就可以就能算出順?biāo)畯募椎氐揭业氐乃玫臅r(shí)間,這樣就能算出甲乙兩地的路程。

  列式為 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小時(shí)) 28 × 5=140 (千米)。

  9、還原問(wèn)題:已知某未知數(shù),經(jīng)過(guò)一定的四則運(yùn)算后所得的結(jié)果,求這個(gè)未知數(shù)的應(yīng)用題,我們叫做還原問(wèn)題。

  解題關(guān)鍵:要弄清每一步變化與未知數(shù)的關(guān)系。

  解題規(guī)律:從最后結(jié)果 出發(fā),采用與原題中相反的運(yùn)算(逆運(yùn)算)方法,逐步推導(dǎo)出原數(shù)。

  根據(jù)原題的運(yùn)算順序列出數(shù)量關(guān)系,然后采用逆運(yùn)算的方法計(jì)算推導(dǎo)出原數(shù)。

  解答還原問(wèn)題時(shí)注意觀察運(yùn)算的順序。若需要先算加減法,后算乘除法時(shí)別忘記寫括號(hào)。

  例 某小學(xué)三年級(jí)四個(gè)班共有學(xué)生 168 人,如果四班調(diào) 3 人到三班,三班調(diào) 6 人到二班,二班調(diào) 6 人到一班,一班調(diào) 2 人到四班,則四個(gè)班的人數(shù)相等,四個(gè)班原有學(xué)生多少人?

  分析:當(dāng)四個(gè)班人數(shù)相等時(shí),應(yīng)為 168 ÷ 4 ,以四班為例,它調(diào)給三班 3 人,又從一班調(diào)入 2 人,所以四班原有的人數(shù)減去 3 再加上 2 等于平均數(shù)。四班原有人數(shù)列式為 168 ÷ 4-2+3=43 (人)

  一班原有人數(shù)列式為 168 ÷ 4-6+2=38 (人);二班原有人數(shù)列式為 168 ÷ 4-6+6=42 (人) 三班原有人數(shù)列式為 168 ÷ 4-3+6=45 (人)。

  10、植樹問(wèn)題:這類應(yīng)用題是以“植樹”為內(nèi)容。凡是研究總路程、株距、段數(shù)、棵樹四種數(shù)量關(guān)系的應(yīng)用題,叫做植樹問(wèn)題。

  解題關(guān)鍵:解答植樹問(wèn)題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長(zhǎng)植樹,然后按基本公式進(jìn)行計(jì)算。

  解題規(guī)律:沿線段植樹

  棵樹=段數(shù)+1 棵樹=總路程÷株距+1

  株距=總路程÷(棵樹-1) 總路程=株距×(棵樹-1)

  沿周長(zhǎng)植樹

  棵樹=總路程÷株距

  株距=總路程÷棵樹

  總路程=株距×棵樹

  例 沿公路一旁埋電線桿 301 根,每相鄰的兩根的間距是 50 米 。后來(lái)全部改裝,只埋了201 根。求改裝后每相鄰兩根的間距。

  分析:本題是沿線段埋電線桿,要把電線桿的根數(shù)減掉一。列式為 50 ×( 301-1 )÷( 201-1 ) =75 (米)

  11、盈虧問(wèn)題:是在等分除法的基礎(chǔ)上發(fā)展起來(lái)的。他的特點(diǎn)是把一定數(shù)量的物品,平均分配給一定數(shù)量的人,在兩次分配中,一次有余,一次不足(或兩次都有余),或兩次都不足),已知所余和不足的數(shù)量,求物品適量和參加分配人數(shù)的問(wèn)題,叫做盈虧問(wèn)題。

  解題關(guān)鍵:盈虧問(wèn)題的解法要點(diǎn)是先求兩次分配中分配者沒份所得物品數(shù)量的差,再求兩次分配中各次共分物品的差(也稱總差額),用前一個(gè)差去除后一個(gè)差,就得到分配者的數(shù),進(jìn)而再求得物品數(shù)。

  解題規(guī)律:總差額÷每人差額=人數(shù)

  總差額的求法可以分為以下四種情況:

  第一次多余,第二次不足,總差額=多余+ 不足

  第一次正好,第二次多余或不足 ,總差額=多余或不足

  第一次多余,第二次也多余,總差額=大多余-小多余

  第一次不足,第二次也不足, 總差額= 大不足-小不足

  例 參加美術(shù)小組的同學(xué),每個(gè)人分的相同的支數(shù)的色筆,如果小組 10 人,則多 25 支,如果小組有 12 人,色筆多余 5 支。求每人 分得幾支?共有多少支色鉛筆?

  分析:每個(gè)同學(xué)分到的色筆相等。這個(gè)活動(dòng)小組有 12 人,比 10 人多 2 人,而色筆多出了( 25-5 ) =20 支 , 2 個(gè)人多出 20 支,一個(gè)人分得 10 支。列式為(25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。

  12、年齡問(wèn)題:將差為一定值的兩個(gè)數(shù)作為題中的一個(gè)條件,這種應(yīng)用題被稱為“年齡問(wèn)題”。

  解題關(guān)鍵:年齡問(wèn)題與和差、和倍、 差倍問(wèn)題類似,主要特點(diǎn)是隨著時(shí)間的變化,年歲不斷增長(zhǎng),但大小兩個(gè)不同年齡的差是不會(huì)改變的,因此,年齡問(wèn)題是一種“差不變”的問(wèn)題,解題時(shí),要善于利用差不變的特點(diǎn)。

  例 父親 48 歲,兒子 21 歲。問(wèn)幾年前父親的年齡是兒子的 4 倍?

  分析:父子的年齡差為 48-21=27 (歲)。由于幾年前父親年齡是兒子的 4 倍,可知父子年齡的倍數(shù)差是( 4-1 )倍。這樣可以算出幾年前父子的年齡,從而可以求出幾年前父親的年齡是兒子的 4 倍。列式為:21( 48-21 )÷( 4-1 ) =12 (年)

  13、雞兔問(wèn)題:已知“雞兔”的總頭數(shù)和總腿數(shù)。求“雞”和“兔”各多少只的一類應(yīng)用題。通常稱為“雞兔問(wèn)題”又稱雞兔同籠問(wèn)題

  解題關(guān)鍵:解答雞兔問(wèn)題一般采用假設(shè)法,假設(shè)全是一種動(dòng)物(如全是“雞”或全是“兔”,然后根據(jù)出現(xiàn)的腿數(shù)差,可推算出某一種的頭數(shù)。

  解題規(guī)律:(總腿數(shù)-雞腿數(shù)×總頭數(shù))÷一只雞兔腿數(shù)的差=兔子只數(shù)

  兔子只數(shù)=(總腿數(shù)-2×總頭數(shù))÷2

  如果假設(shè)全是兔子,可以有下面的式子:

  雞的只數(shù)=(4×總頭數(shù)-總腿數(shù))÷2

  兔的頭數(shù)=總頭數(shù)-雞的只數(shù)

  例 雞兔同籠共 50 個(gè)頭, 170 條腿。問(wèn)雞兔各有多少只?

  兔子只數(shù) ( 170-2 × 50 )÷ 2 =35 (只)

  雞的只數(shù) 50-35=15 (只)

189470