高考數(shù)學知識點歸納整理
高中數(shù)學涉及的知識點很多,需要把高中三年的數(shù)學知識點總結(jié)起來,這樣比較有利于復(fù)習,下面是小編為大家整理的高考數(shù)學知識點歸納整理,希望對大家有所幫助!
高考數(shù)學知識點歸納整理1
考數(shù)學知識點:兩角和公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式 tan2A=2tanA/(1-tan2A)
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑
余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
圓的標準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
拋物線標準方程 y2=2px y2=-2px x2=2py x2=-2py
高考數(shù)學知識點:圓的切線方程
(1)已知圓 .
①若已知切點 在圓上,則切線只有一條,利用垂直關(guān)系求斜率
②過圓外一點的切線方程可設(shè)為 ,再利用相切條件求k,這時必有兩條切線,注意不要漏掉平行于y軸的切線.
③斜率為k的切線方程可設(shè)為 ,再利用相切條件求b,必有兩條切線.
(2)已知圓 .過圓上的 點的切線方程為
高考數(shù)學知識點:線線平行常用方法總結(jié)
(1)定義:在同一平面內(nèi)沒有公共點的兩條直線是平行直線。
(2)公理:在空間中平行于同一條直線的兩只直線互相平行。
(3)初中所學平面幾何中判斷直線平行的方法
(4)線面平行的性質(zhì):如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面的相交,那么這條直線就和兩平面的交線平行。
(5)線面垂直的性質(zhì):如果兩直線同時垂直于同一平面,那么兩直線平行。
(6)面面平行的性質(zhì):若兩個平行平面同時與第三個平面相交,則它們的交線平行。
高考數(shù)學知識點歸納整理2
高考數(shù)學知識點總結(jié)精華一
一、高考數(shù)學中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)
主要是考函數(shù)和導(dǎo)數(shù),因為這是整個高中階段中最核心的部分,這部分里還重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析。
二、平面向量和三角函數(shù)
對于這部分知識重點考察三個方面:是劃減與求值,第一,重點掌握公式和五組基本公式;第二,掌握三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì);第三,正弦定理和余弦定理來解三角形,這方面難度并不大。
高考數(shù)學知識點總結(jié)精華二
三、數(shù)列
數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。
四、空間向量和立體幾何
在里面重點考察兩個方面:一個是證明;一個是計算。
五、概率和統(tǒng)計
概率和統(tǒng)計主要屬于數(shù)學應(yīng)用問題的范疇,需要掌握幾個方面:……等可能的概率;……事件;獨立事件和獨立重復(fù)事件發(fā)生的概率。
高考數(shù)學知識點總結(jié)精華三
六、解析幾何
這部分內(nèi)容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關(guān)系,要掌握它的通法;第二類動點問題;第三類是弦長問題;第四類是對稱問題;第五類重點問題,這類題往往覺得有思路卻沒有一個清晰的答案,但需要要掌握比較好的算法,來提高做題的準確度。
七、壓軸題
同學們在最后的備考復(fù)習中,還應(yīng)該把重點放在不等式計算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時多做些壓軸題真題,爭取能解題就解題,能思考就思考。
高考數(shù)學直線方程知識點:什么是直線方程
從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯(lián)立求解,當這個聯(lián)立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交于一點。常用直線向上方向與 X 軸正向的 夾角( 叫直線的傾斜角 )或該角的正切(稱直線的斜率)來表示平面上直線(對于X軸)的傾斜程度??梢酝ㄟ^斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標軸的交點在該坐標軸上的坐標,稱為直線在該坐標軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標系中,用兩個表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。
高考數(shù)學知識點歸納整理3
1、空間立體幾何的結(jié)構(gòu)。包括棱柱,棱錐和棱臺的結(jié)構(gòu)特征。圓柱圓錐圓臺和球的結(jié)構(gòu)特征。
2、圓柱側(cè)面積,圓錐側(cè)面積,圓臺側(cè)面積,直棱柱側(cè)面積,正棱柱側(cè)面積和正棱臺側(cè)面積以及球的面積的求法。
3、柱、錐、臺、球體積公式。
4、三視圖和直觀圖。
5、線面平行的判斷和性質(zhì)。線面平行的判定定理、面面平行的判定定理、線面平行的性質(zhì)定理、面面平行的性質(zhì)定理。線面垂直的判定和性質(zhì)。線面垂直的判定定理、面面垂直的判定定理;線面垂直的性質(zhì)定理、面面垂直的性質(zhì)定理。
6、統(tǒng)計:用樣本估計總體。用樣本的頻率分布,估計總體的頻率分布、用樣本的數(shù)字特征估計總體的數(shù)字特征、方差、標準差。變量間的相關(guān)關(guān)系與兩個變量的線性關(guān)系。
高考數(shù)學知識點歸納整理相關(guān)文章: