高中數(shù)學(xué)知識(shí)點(diǎn)大全
有的學(xué)生認(rèn)為高中數(shù)學(xué)難做難做。其實(shí)高中數(shù)學(xué)整體上很簡單,很簡單,很多知識(shí)只要讀兩遍就可以了。下面是小編整理的高中數(shù)學(xué)知識(shí)點(diǎn)大全,希望對你們有所幫助!
高中數(shù)學(xué)知識(shí)點(diǎn)
1、基本初等函數(shù)
指數(shù)、對數(shù)、冪函數(shù)三大函數(shù)的運(yùn)算性質(zhì)及圖像
函數(shù)的幾大要素和相關(guān)考點(diǎn)基本都在函數(shù)圖像上有所體現(xiàn),單調(diào)性、增減性、極值、零點(diǎn)等等。關(guān)于這三大函數(shù)的運(yùn)算公式,多記多用,多做一點(diǎn)練習(xí),基本就沒問題。
函數(shù)圖像是這一章的重難點(diǎn),而且圖像問題是不能靠記憶的,必須要理解,要會(huì)熟練的畫出函數(shù)圖像,定義域、值域、零點(diǎn)等等。對于冪函數(shù)還要搞清楚當(dāng)指數(shù)冪大于一和小于一時(shí)圖像的不同及函數(shù)值的大小關(guān)系,這也是??键c(diǎn)。另外指數(shù)函數(shù)和對數(shù)函數(shù)的對立關(guān)系及其相互之間要怎樣轉(zhuǎn)化等問題,需要著重回看課本例題。
2、函數(shù)的應(yīng)用
這一章主要考是函數(shù)與方程的結(jié)合,其實(shí)就是函數(shù)的零點(diǎn),也就是函數(shù)圖像與X軸的交點(diǎn)。這三者之間的轉(zhuǎn)化關(guān)系是這一章的重點(diǎn),要學(xué)會(huì)在這三者之間靈活轉(zhuǎn)化,以求能最簡單的解決問題。關(guān)于證明零點(diǎn)的方法,直接計(jì)算加得必有零點(diǎn),連續(xù)函數(shù)在x軸上方下方有定義則有零點(diǎn)等等,這些難點(diǎn)對應(yīng)的證明方法都要記住,多練習(xí)。二次函數(shù)的零點(diǎn)的Δ判別法,這個(gè)需要你看懂定義,多畫多做題。
3、空間幾何
三視圖和直觀圖的繪制不算難,但是從三視圖復(fù)原出實(shí)物從而計(jì)算就需要比較強(qiáng)的空間感,要能從三張平面圖中慢慢在腦海中畫出實(shí)物,這就要求學(xué)生特別是空間感弱的學(xué)生多看書上的例圖,把實(shí)物圖和平面圖結(jié)合起來看,先熟練地正推,再慢慢的逆推(建議用紙做一個(gè)立方體來找感覺)。
在做題時(shí)結(jié)合草圖是有必要的,不能單憑想象。后面的錐體、柱體、臺(tái)體的表面積和體積,把公式記牢問題就不大。
4、點(diǎn)、直線、平面之間的位置關(guān)系
這一章除了面與面的相交外,對空間概念的要求不強(qiáng),大部分都可以直接畫圖,這就要求學(xué)生多看圖。自己畫草圖的時(shí)候要嚴(yán)格注意好實(shí)線虛線,這是個(gè)規(guī)范性問題。
關(guān)于這一章的內(nèi)容,牢記直線與直線、面與面、直線與面相交、垂直、平行的幾大定理及幾大性質(zhì),同時(shí)能用圖形語言、文字語言、數(shù)學(xué)表達(dá)式表示出來。只要這些全部過關(guān)這一章就解決了一大半。這一章的難點(diǎn)在于二面角這個(gè)概念,大多同學(xué)即使知道有這個(gè)概念,也無法理解怎么在二面里面做出這個(gè)角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個(gè)沒有什么捷徑可走。
5、圓與方程
能熟練地把一般式方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,通常的考試形式是等式的一邊含根號(hào),另一邊不含,這時(shí)就要注意開方后定義域或值域的限制。通過點(diǎn)到點(diǎn)的距離、點(diǎn)到直線的距離、圓半徑的大小關(guān)系來判斷點(diǎn)與圓、直線與圓、圓與圓的位置關(guān)系。另外注意圓的對稱性引起的相切、相交等的多種情況,自己把幾種對稱的形式羅列出來,多思考就不難理解了。
6、三角函數(shù)
考試必在這一塊出題,且題量不小!誘導(dǎo)公式和基本三角函數(shù)圖像的一些性質(zhì),沒有太大難度,只要會(huì)畫圖就行。難度都在三角函數(shù)形函數(shù)的振幅、頻率、周期、相位、初相上,及根據(jù)最值計(jì)算A、B的值和周期,及恒等變化時(shí)的圖像及性質(zhì)變化,這部分的知識(shí)點(diǎn)內(nèi)容較多,需要多花時(shí)間,不要再定義上死扣,要從圖像和例題入手。
7、平面向量
向量的運(yùn)算性質(zhì)及三角形法則、平行四邊形法則的難度都不大,只要在計(jì)算的時(shí)候記住要“同起點(diǎn)的向量”這一條就OK了。向量共線和垂直的數(shù)學(xué)表達(dá),是計(jì)算當(dāng)中經(jīng)常用到的公式。向量的共線定理、基本定理、數(shù)量積公式。分點(diǎn)坐標(biāo)公式是重點(diǎn)內(nèi)容,也是難點(diǎn)內(nèi)容,要花心思記憶。
8、三角恒等變換
這一章公式特別多,像差倍半角公式這類內(nèi)容常會(huì)出現(xiàn),所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫好后貼在桌子上,天天都要看。要提一點(diǎn),就是三角恒等變換是有一定規(guī)律的,記憶的時(shí)候可以集合三角函數(shù)去記。
9、解三角形
掌握正弦、余弦公式及其變式、推論、三角面積公式即可。
10、數(shù)列
等差、等比數(shù)列的通項(xiàng)公式、前n項(xiàng)及一些性質(zhì)常出現(xiàn)于填空、解答題中,這部分內(nèi)容學(xué)起來比較簡單,但考驗(yàn)對其推導(dǎo)、計(jì)算、活用的層面較深,因此要仔細(xì)。考試題中,通項(xiàng)公式、前n項(xiàng)和的內(nèi)容出現(xiàn)頻次較多,這類題看到后要帶有目的的去推導(dǎo)就沒問題了。
11、不等式
這一章一般用線性規(guī)劃的形式來考察學(xué)生,這種題通常是和實(shí)際問題聯(lián)系的,所以要會(huì)讀題,從題中找不等式,畫出線性規(guī)劃圖,然后再根據(jù)實(shí)際問題的限制要求來求最值。
高中數(shù)學(xué)公式大全
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系 X1+X2=-b/a X1_X2=c/a 注:韋達(dá)定理
判別式
b2-4ac=0 注:方程有兩個(gè)相等的實(shí)根
b2-4ac>0 注:方程有兩個(gè)不等的實(shí)根
b2-4ac<0 注:方程沒有實(shí)根,有共軛復(fù)數(shù)根
三角函數(shù)公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑
余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱側(cè)面積 S=c_h 斜棱柱側(cè)面積 S=c'_h
正棱錐側(cè)面積 S=1/2c_h' 正棱臺(tái)側(cè)面積 S=1/2(c+c')h'
圓臺(tái)側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi_r2
圓柱側(cè)面積 S=c_h=2pi_h 圓錐側(cè)面積 S=1/2_c_l=pi_r_l
弧長公式 l=a_r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2_l_r
錐體體積公式 V=1/3_S_H 圓錐體體積公式 V=1/3_pi_r2h
斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長
柱體體積公式 V=s_h 圓柱體 V=pi_r2h
高考前數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
選擇填空題
1、易錯(cuò)點(diǎn)歸納:
九大模塊易混淆難記憶考點(diǎn)分析,如概率和頻率概念混淆、數(shù)列求和公式記憶錯(cuò)誤等,強(qiáng)化基礎(chǔ)知識(shí)點(diǎn)記憶,避開因?yàn)橹R(shí)點(diǎn)失誤造成的客觀性解題錯(cuò)誤。
針對審題、解題思路不嚴(yán)謹(jǐn)如集合題型未考慮空集情況、函數(shù)問題未考慮定義域等主觀性因素造成的失誤進(jìn)行專項(xiàng)訓(xùn)練。
2、答題方法:
選擇題十大速解方法:
排除法、增加條件法、以小見大法、極限法、關(guān)鍵點(diǎn)法、對稱法、小結(jié)論法、歸納法、感覺法、分析選項(xiàng)法;
填空題四大速解方法:直接法、特殊化法、數(shù)形結(jié)合法、等價(jià)轉(zhuǎn)化法。
解答題
專題一、三角變換與三角函數(shù)的性質(zhì)問題
1、解題路線圖
①不同角化同角
②降冪擴(kuò)角
③化f(x)=Asin(ωx+φ)+h
④結(jié)合性質(zhì)求解。
2、構(gòu)建答題模板
①化簡:三角函數(shù)式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為“一角、一次、一函數(shù)”的形式。
②整體代換:將ωx+φ看作一個(gè)整體,利用y=sin x,y=cos x的性質(zhì)確定條件。
③求解:利用ωx+φ的范圍求條件解得函數(shù)y=Asin(ωx+φ)+h的性質(zhì),寫出結(jié)果。
④反思:反思回顧,查看關(guān)鍵點(diǎn),易錯(cuò)點(diǎn),對結(jié)果進(jìn)行估算,檢查規(guī)范性。
專題二、解三角形問題
1、解題路線圖
(1) ①化簡變形;②用余弦定理轉(zhuǎn)化為邊的關(guān)系;③變形證明。
(2) ①用余弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。
2、構(gòu)建答題模板
①定條件:即確定三角形中的已知和所求,在圖形中標(biāo)注出來,然后確定轉(zhuǎn)化的方向。
②定工具:即根據(jù)條件和所求,合理選擇轉(zhuǎn)化的工具,實(shí)施邊角之間的互化。
③求結(jié)果。
④再反思:在實(shí)施邊角互化的時(shí)候應(yīng)注意轉(zhuǎn)化的方向,一般有兩種思路:一是全部轉(zhuǎn)化為邊之間的關(guān)系;二是全部轉(zhuǎn)化為角之間的關(guān)系,然后進(jìn)行恒等變形。
專題三、數(shù)列的通項(xiàng)、求和問題
1、解題路線圖
①先求某一項(xiàng),或者找到數(shù)列的關(guān)系式。
②求通項(xiàng)公式。
③求數(shù)列和通式。
2、構(gòu)建答題模板
①找遞推:根據(jù)已知條件確定數(shù)列相鄰兩項(xiàng)之間的關(guān)系,即找數(shù)列的遞推公式。
②求通項(xiàng):根據(jù)數(shù)列遞推公式轉(zhuǎn)化為等差或等比數(shù)列求通項(xiàng)公式,或利用累加法或累乘法求通項(xiàng)公式。
③定方法:根據(jù)數(shù)列表達(dá)式的結(jié)構(gòu)特征確定求和方法(如公式法、裂項(xiàng)相消法、錯(cuò)位相減法、分組法等)。
④寫步驟:規(guī)范寫出求和步驟。
⑤再反思:反思回顧,查看關(guān)鍵點(diǎn)、易錯(cuò)點(diǎn)及解題規(guī)范。
專題四、利用空間向量求角問題
1、解題路線圖
①建立坐標(biāo)系,并用坐標(biāo)來表示向量。
②空間向量的坐標(biāo)運(yùn)算。
③用向量工具求空間的角和距離。
2、構(gòu)建答題模板
①找垂直:找出(或作出)具有公共交點(diǎn)的三條兩兩垂直的直線。
②寫坐標(biāo):建立空間直角坐標(biāo)系,寫出特征點(diǎn)坐標(biāo)。
③求向量:求直線的方向向量或平面的'法向量。
④求夾角:計(jì)算向量的夾角。
⑤得結(jié)論:得到所求兩個(gè)平面所成的角或直線和平面所成的角。
專題五、圓錐曲線中的范圍問題
1、解題路線圖
①設(shè)方程。
②解系數(shù)。
③得結(jié)論。
2、構(gòu)建答題模板
①提關(guān)系:從題設(shè)條件中提取不等關(guān)系式。
②找函數(shù):用一個(gè)變量表示目標(biāo)變量,代入不等關(guān)系式。
③得范圍:通過求解含目標(biāo)變量的不等式,得所求參數(shù)的范圍。
④再回顧:注意目標(biāo)變量的范圍所受題中其他因素的制約。
專題六、解析幾何中的探索性問題
1、解題路線圖
①一般先假設(shè)這種情況成立(點(diǎn)存在、直線存在、位置關(guān)系存在等)
②將上面的假設(shè)代入已知條件求解。
③得出結(jié)論。
2、構(gòu)建答題模板
①先假定:假設(shè)結(jié)論成立。
②再推理:以假設(shè)結(jié)論成立為條件,進(jìn)行推理求解。
③下結(jié)論:若推出合理結(jié)果,經(jīng)驗(yàn)證成立則肯。 定假設(shè);若推出矛盾則否定假設(shè)。
④再回顧:查看關(guān)鍵點(diǎn),易錯(cuò)點(diǎn)(特殊情況、隱含條件等),審視解題規(guī)范性。
專題七、離散型隨機(jī)變量的均值與方差
1、解題路線圖
(1)①標(biāo)記事件;②對事件分解;③計(jì)算概率。
(2)①確定ξ取值;②計(jì)算概率;③得分布列;④求數(shù)學(xué)期望。
2、構(gòu)建答題模板
①定元:根據(jù)已知條件確定離散型隨機(jī)變量的取值。
②定性:明確每個(gè)隨機(jī)變量取值所對應(yīng)的事件。
③定型:確定事件的概率模型和計(jì)算公式。
④計(jì)算:計(jì)算隨機(jī)變量取每一個(gè)值的概率。
⑤列表:列出分布列。
⑥求解:根據(jù)均值、方差公式求解其值。
專題八、函數(shù)的單調(diào)性、極值、最值問題
1、解題路線圖
(1)①先對函數(shù)求導(dǎo);②計(jì)算出某一點(diǎn)的斜率;③得出切線方程。
(2)①先對函數(shù)求導(dǎo);②談?wù)搶?dǎo)數(shù)的正負(fù)性;③列表觀察原函數(shù)值;④得到原函數(shù)的單調(diào)區(qū)間和極值。
2、構(gòu)建答題模板
①求導(dǎo)數(shù):求f(x)的導(dǎo)數(shù)f′(x)。(注意f(x)的定義域)
②解方程:解f′(x)=0,得方程的根
③列表格:利用f′(x)=0的根將f(x)定義域分成若干個(gè)小開區(qū)間,并列出表格。
④得結(jié)論:從表格觀察f(x)的單調(diào)性、極值、最值等。
⑤再回顧:對需討論根的大小問題要特殊注意,另外觀察f(x)的間斷點(diǎn)及步驟規(guī)范性。
以上模板僅供參考,希望大家能針對自己的情況整理出來最適合的“套路”。
高中數(shù)學(xué)學(xué)習(xí)心得
數(shù)學(xué)是一們基礎(chǔ)學(xué)科,我們從小就開始接觸到它?,F(xiàn)在我們已經(jīng)步入高中,由于高中數(shù)學(xué)對知識(shí)的難度、深度、廣度要求更高,有一部分同學(xué)由于不適應(yīng)這種變化,數(shù)學(xué)成績總是不如人意。甚至產(chǎn)生這樣的困惑:“我在初中時(shí)數(shù)學(xué)成績很好,可現(xiàn)在怎么了?”其實(shí),學(xué)習(xí)是一個(gè)不斷接收新知識(shí)的過程。正是由于你在進(jìn)入高中后學(xué)習(xí)方法或學(xué)習(xí)態(tài)度的影響,才會(huì)造成學(xué)得累死而成績不好的后果。那么,究竟該如何學(xué)好高中數(shù)學(xué)呢?以下我談?wù)勎业母咧袛?shù)學(xué)學(xué)習(xí)心得。
一、 認(rèn)清學(xué)習(xí)的能力狀態(tài)。
1、 心理素質(zhì)。我們在高中學(xué)習(xí)環(huán)境下取決于我們是否具有面對挫折、冷靜分析問題的辦法。當(dāng)我們面對困難時(shí)不應(yīng)產(chǎn)生畏懼感,面對失敗時(shí)不應(yīng)灰心喪氣,而要勇于正視自己,及時(shí)作出總結(jié)教訓(xùn),改變學(xué)習(xí)方法。
2、 學(xué)習(xí)方式、習(xí)慣的反思與認(rèn)識(shí)。(1) 學(xué)習(xí)的主動(dòng)性。我們在進(jìn)入高中以后,不能還像初中時(shí)那樣有很強(qiáng)的依賴心理,不訂學(xué)習(xí)計(jì)劃,坐等上課,課前不預(yù)習(xí),上課忙于記筆記而忽略了真正的聽課,顧此失彼,被動(dòng)學(xué)習(xí)。(2) 學(xué)習(xí)的條理性。我們在每學(xué)習(xí)一課內(nèi)容時(shí),要學(xué)會(huì)將知識(shí)有條理地分為若干類,剖析概念的內(nèi)涵外延,重點(diǎn)難點(diǎn)要突出。不要忙于記筆記,而對要點(diǎn)沒有聽清楚或聽不全。筆記記了一大摞,問題也有一大堆。如果還不能及時(shí)鞏固、總結(jié),而忙于套著題型趕作業(yè),對概念、定理、公式不能理解而死記硬背,則會(huì)事倍功半,收效甚微。(3) 忽視基礎(chǔ)。在我身邊,常有些“自我感覺良好”的同學(xué),忽視基礎(chǔ)知識(shí)、基本技能和基本方法,不能牢牢地抓住課本,而是偏重于對難題的攻解,好高騖遠(yuǎn),重“量”而輕“質(zhì)”,陷入題海,往往在考試中不是演算錯(cuò)誤就是中途“卡殼”。(4) 不良習(xí)慣。主要有對答案,卷面書寫不工整,格式不規(guī)范,不相信自己的結(jié)論,缺乏對問題解決的信心和決心,遇到問題不能獨(dú)立思考,養(yǎng)成一種依賴于老師解說的心理,做作業(yè)不講究效率,學(xué)習(xí)效率不高。
二、 努力提高自己的學(xué)習(xí)能力。
1、 抓要點(diǎn)提高學(xué)習(xí)效率。(1) 抓教材處理。正所謂“萬變不離其中”。要知道,教材始終是我們學(xué)習(xí)的根本依據(jù)。教學(xué)是活的,思維也是活的,學(xué)習(xí)能力是隨著知識(shí)的積累而同時(shí)形成的。我們要通過老師教學(xué),理解所學(xué)內(nèi)容在教材中的地位,并將前后知識(shí)聯(lián)系起來,把握教材,才能掌握學(xué)習(xí)的主動(dòng)性。(2) 抓問題暴露。對于那些典型的問題,必須及時(shí)解決,而不能把問題遺留下來,而要對遺留的問題及時(shí)、有效的解決。(3) 抓思維訓(xùn)練。數(shù)學(xué)的特點(diǎn)是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高。我們在平時(shí)的訓(xùn)練中,要注重一個(gè)思維的過程,學(xué)習(xí)能力是在不斷運(yùn)用中才能培養(yǎng)出來的。(5) 抓45分鐘課堂效率。我們學(xué)習(xí)的大部分時(shí)間都在學(xué)校,如果不能很好地抓住課堂時(shí)間,而寄希望于課外去補(bǔ),則會(huì)使學(xué)習(xí)效率大打折扣。
高中數(shù)學(xué)知識(shí)點(diǎn)大全相關(guān)文章:
★ 高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
★ 高一數(shù)學(xué)必修一知識(shí)點(diǎn)匯總
★ 高中數(shù)學(xué)學(xué)習(xí)方法:知識(shí)點(diǎn)總結(jié)最全版
★ 高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納
★ 高三數(shù)學(xué)知識(shí)點(diǎn)考點(diǎn)總結(jié)大全
★ 高中數(shù)學(xué)基礎(chǔ)知識(shí)大全
★ 高三數(shù)學(xué)知識(shí)點(diǎn)梳理匯總