人教版八年級下學期數(shù)學教案部分教案(2)
人教版八年級下學期數(shù)學教案部分教案
人教版八年級下學期數(shù)學教案部分教案:平行四邊形的性質(zhì)及判定
教學目的:
1、深入了解平行四邊形的不穩(wěn)定性;
2、理解兩條平行線間的距離定義(區(qū)別于兩點間的距離、點到直線的距離)
3、熟練掌握平行四邊形的定義,平行四邊形性質(zhì)定理1、定理2及其推論、定理3和四個平行四邊形判定定理,并運用它們進行有關的論證和計算;
4、在教學中滲透事物總是相互聯(lián)系又相互區(qū)別的辨證唯物主義觀點,體驗“特殊--一般--特殊”的辨證唯物主義觀點。
教學重點:平行四邊形的性質(zhì)和判定。
教學難點:性質(zhì)、判定定理的運用。
教學程序:
一、復習創(chuàng)情導入
平行四邊形的性質(zhì):
邊:對邊平行(定義);對邊相等(定理2);對角線互相平分(定理3)夾在平行線間的平行線段相等。
角:對角相等(定理1);鄰角互補。
平行四邊形的判定:
邊:兩組 對邊平行(定義);兩組對邊相等(定理2);對角線互相平分(定理3);一組對邊平行且相等(定理4);兩組對角分別相等(定理1)
二、授新
1、提出問題:平行四邊形有哪些性質(zhì):判定平行四邊形有哪些方法:
2、自學質(zhì)疑:自學課本P79-82頁,并提出疑難問題。
3、分組討論:討論自學中不能解決的問題及學生提出問題。
4、反饋歸納:根據(jù)預習和討論的效果,進行點撥指導。
5、嘗試練習:完成習題,解答疑難。
6、深化創(chuàng)新:平行四邊形的性質(zhì):
邊:對邊平行(定義);對邊相等(定理2);對角線互相平分(定理3)夾在平行線間的平行線段相等。
角:對角相等(定理1);鄰角互補。
平行四邊形的判定:
邊:兩組 對邊平行(定義);兩組對邊相等(定理2);對角線互相平分(定理3);一組對邊平行且相等(定理4);兩組對角分別相等(定理1)
7、推薦作業(yè)
1、熟記“歸納整理的內(nèi)容”;
2、完成《練習卷》;
3、預習:(1)矩形的定義?
(2)矩形的性質(zhì)定理1、2及其推論的內(nèi)容是什么?
(3)怎樣證明?
(4)例1的解答過程中,運用哪些性質(zhì)?
思考題
1、平行四邊形的性質(zhì)定理3的逆命題是否是真命題?根據(jù)題設和結(jié)論寫出已 知求證;
2、如何證明性質(zhì)定理3的逆命題?
3、有幾種方法可以證明?
4、例2的證明中,運用了哪些性質(zhì)及判定?是否有其他方法?
5、例3的證明中,運用了哪些性質(zhì)及判定?是否有其他方法?
跟蹤練習
1、在四邊形ABCD中,AC交BD 于點O,若AO=1/2AC,BO=1/2BD,則四邊形ABCD是平行四邊形。( )
2、在四邊形ABCD中,AC交BD 于點O,若OC= 且,則四邊形ABCD是平行四邊形。
3、下列條件中,能夠判斷一個四邊形是平行四邊形的是( )
(A)一組對角相等; (B)對角線相等;
(C)兩條鄰邊相等; (D)對角線互相平分。
創(chuàng)新練習
已知,如圖,平行四邊形ABCD的AC和BD相交于O點,經(jīng)過O點的直線交BC和AD于E、F,求證:四邊形BEDF是平行四邊形。(用兩種方法)