2017一年級(jí)下冊(cè)數(shù)學(xué)練習(xí)題規(guī)律題(2)
2017一年級(jí)下冊(cè)數(shù)學(xué)練習(xí)題規(guī)律題
一年級(jí)數(shù)學(xué)解題思路
1、實(shí)物演示法
利用身邊的實(shí)物來(lái)演示數(shù)學(xué)題目的條件和問(wèn)題,及條件與條件,條件與問(wèn)題之間的關(guān)系,在此基礎(chǔ)上進(jìn)行分析思考、尋求解決問(wèn)題的方法。這種方法可以使數(shù)學(xué)內(nèi)容形象化,數(shù)量關(guān)系具體化。比如:數(shù)學(xué)中的相遇問(wèn)題。通過(guò)實(shí)物演示不僅能夠解決“同時(shí)、相向而行、相遇”等術(shù)語(yǔ),而且為學(xué)生指明了思維方向。再如,在一個(gè)圓形(方形)水塘周?chē)詷?shù)問(wèn)題,如果能進(jìn)行一個(gè)實(shí)際操作,效果要好得多。
二年級(jí)數(shù)學(xué)教材中,“三個(gè)小朋友見(jiàn)面握手,每?jī)扇宋找淮危惨諑状问?rdquo;與“用三張不同的數(shù)字卡片擺成兩位數(shù),共可以擺成多少個(gè)兩位數(shù)”。像這樣的有關(guān)排列、組合的知識(shí),在小學(xué)教學(xué)中,如果實(shí)物演示的方法,是很難達(dá)到預(yù)期的教學(xué)目標(biāo)的。
特別是一些數(shù)學(xué)概念,如果沒(méi)有實(shí)物演示,小學(xué)生就不能真正掌握。長(zhǎng)方形的面積、長(zhǎng)方體的認(rèn)識(shí)、圓柱的體積等的學(xué)習(xí),都依賴(lài)于實(shí)物演示作思維的基礎(chǔ)。
所以,小學(xué)數(shù)學(xué)教師應(yīng)盡可能多地制作一些數(shù)學(xué)教(學(xué))具,而且這些教(學(xué))具用過(guò)后要好好保存,可以重復(fù)使用。這樣可以有效地提高課堂教學(xué)效率,提升學(xué)生的學(xué)習(xí)成績(jī)。
2、圖示法
借助直觀圖形來(lái)確定思考方向,尋找思路,求得解決問(wèn)題的方法。圖示法直觀可靠,便于分析數(shù)形關(guān)系,不受邏輯推導(dǎo)限制,思路靈活開(kāi)闊,但圖示依賴(lài)于人們對(duì)表象加工整理的可靠性上,一旦圖示與實(shí)際情況不相符,易使在此基礎(chǔ)上的聯(lián)想、想象出現(xiàn)謬誤或走入誤區(qū),最后導(dǎo)致錯(cuò)誤的結(jié)果。比如有的數(shù)學(xué)教師愛(ài)徒手畫(huà)數(shù)學(xué)圖形,難免造成不準(zhǔn)確,使學(xué)生產(chǎn)生誤解。
在課堂教學(xué)當(dāng)中,要多用圖示的方法來(lái)解決問(wèn)題。有的題目,圖畫(huà)出來(lái)了,結(jié)果也就出來(lái)的;有的題,圖畫(huà)好了,題意學(xué)生也就明白了;有的題,畫(huà)圖則可以幫助分析題意、啟迪思路,作為其他解法的輔助手段。
例1:把一根木頭鋸成3段需要24分鐘,鋸成6段需要多少分鐘?(圖略)
思維方法是:圖示法。
思維方向是:鋸幾次,每次用幾分鐘。
思路是:鋸3段鋸了幾次,每次用幾分鐘,鋸6段鋸了幾次,需要多少分鐘。
例2:判斷等腰三角形中,點(diǎn)D是底邊BC的中點(diǎn),圖甲的面積比圖乙的面積大,圖甲的周長(zhǎng)比圖乙的周長(zhǎng)長(zhǎng)。(圖略)
思維方法:圖示法。
思維方向:先比較面積,再比較周長(zhǎng)。
思路:作條輔助線。圖甲占的面積大,圖乙所占面積小,所以“圖甲的面積比圖乙的面積大”是正確的。線段AD比曲線AD短,所以“圖甲的周長(zhǎng)比圖乙的周長(zhǎng)長(zhǎng)”是錯(cuò)誤的。
一年級(jí)數(shù)學(xué)解題方法
1對(duì)照法如何正確地理解和運(yùn)用數(shù)學(xué)概念?小學(xué)數(shù)學(xué)常用的方法就是對(duì)照法。根據(jù)數(shù)學(xué)題意,對(duì)照概念、性質(zhì)、定律、法則、公式、名詞、術(shù)語(yǔ)的含義和實(shí)質(zhì),依靠對(duì)數(shù)學(xué)知識(shí)的理解、記憶、辨識(shí)、再現(xiàn)、遷移來(lái)解題的方法叫做對(duì)照法。
這個(gè)方法的思維意義就在于,訓(xùn)練孩子對(duì)數(shù)學(xué)知識(shí)的正確理解、牢固記憶、準(zhǔn)確辨識(shí)。
例1:三個(gè)連續(xù)自然數(shù)的和是18,則這三個(gè)自然數(shù)從小到大分別是多少?
對(duì)照自然數(shù)的概念和連續(xù)自然數(shù)的性質(zhì)可以知道:三個(gè)連續(xù)自然數(shù)和的平均數(shù)就是這三個(gè)連續(xù)自然數(shù)的中間那個(gè)數(shù)。
例2:判斷題:能被2除盡的數(shù)一定是偶數(shù)。
這里要對(duì)照“除盡”和“偶數(shù)”這兩個(gè)數(shù)學(xué)概念。只有這兩個(gè)概念全理解了,才能做出正確判斷。
2比較法通過(guò)對(duì)比數(shù)學(xué)條件及問(wèn)題的異同點(diǎn),研究產(chǎn)生異同點(diǎn)的原因,從而發(fā)現(xiàn)解決問(wèn)題的方法,叫比較法。
比較法要注意:
(1)找相同點(diǎn)必找相異點(diǎn),找相異點(diǎn)必找相同點(diǎn),不可或缺,也就是說(shuō),比較要完整。
(2)找聯(lián)系與區(qū)別,這是比較的實(shí)質(zhì)。
(3)必須在同一種關(guān)系下(同一種標(biāo)準(zhǔn))進(jìn)行比較,這是“比較”的基本條件。
(4)要抓住主要內(nèi)容進(jìn)行比較,盡量少用“窮舉法”進(jìn)行比較,那樣會(huì)使重點(diǎn)不突出。
(5)因?yàn)閿?shù)學(xué)的嚴(yán)密性,決定了比較必須要精細(xì),往往一個(gè)字,一個(gè)符號(hào)就決定了比較結(jié)論的對(duì)或錯(cuò)。
例3:填空:0.75的最高位是(),這個(gè)數(shù)小數(shù)部分的最高位是();十分位的數(shù)4與十位上的數(shù)4相比,它們的()相同,()不同,前者比后者小了()。
這道題的意圖就是要對(duì)“一個(gè)數(shù)的最高位和小數(shù)部分的最高位的區(qū)別”,還有“數(shù)位和數(shù)值”的區(qū)別等。
例4:六年級(jí)同學(xué)種一批樹(shù),如果每人種5棵,則剩下75棵樹(shù)沒(méi)有種;如果每人種7棵,則缺少15棵樹(shù)苗。六年級(jí)有多少學(xué)生?
這是兩種方案的比較。相同點(diǎn)是:六年級(jí)人數(shù)不變;相異點(diǎn)是:兩種方案中的條件不一樣。
找聯(lián)系:每人種樹(shù)棵數(shù)變化了,種樹(shù)的總棵數(shù)也發(fā)生了變化。
找解決思路(方法):每人多種7-5=2(棵),那么,全班就多種了75+15=90(棵),全班人數(shù)為90÷2=45(人)。
3公式法運(yùn)用定律、公式、規(guī)則、法則來(lái)解決問(wèn)題的方法。它體現(xiàn)的是由一般到特殊的演繹思維。公式法簡(jiǎn)便、有效,也是孩子學(xué)習(xí)數(shù)學(xué)必須學(xué)會(huì)和掌握的一種方法。但一定要讓孩子對(duì)公式、定律、規(guī)則、法則有一個(gè)正確而深刻的理解,并能準(zhǔn)確運(yùn)用。
例5:計(jì)算59×37+12×59+59
59×37+12×59+59
=59×(37+12+1)……運(yùn)用乘法分配律
=59×50……運(yùn)用加法計(jì)算法則
=(60-1)×50……運(yùn)用數(shù)的組成規(guī)則
=60×50-1×50……運(yùn)用乘法分配律
=3000-50……運(yùn)用乘法計(jì)算法則
=2950……運(yùn)用減法計(jì)算法則
4分析法把整體分解為部分,把復(fù)雜的事物分解為各個(gè)部分或要素,并對(duì)這些部分或要素進(jìn)行研究、推導(dǎo)的一種思維方法叫做分析法。
依據(jù):總體都是由部分構(gòu)成的。
思路:為了更好地研究和解決總體,先把整體的各部分或要素割裂開(kāi)來(lái),再分別對(duì)照要求,從而理順解決問(wèn)題的思路。
也就是從求解的問(wèn)題出發(fā),正確選擇所需要的兩個(gè)條件,依次推導(dǎo),一直到問(wèn)題得到解決為止,這種解題模式是“由果溯因”。分析法也叫逆推法。常用“枝形圖”進(jìn)行圖解思路。
例6:玩具廠計(jì)劃每天生產(chǎn)200件玩具,已經(jīng)生產(chǎn)了6天,共生產(chǎn)1260件。問(wèn)平均每天超過(guò)計(jì)劃多少件?
思路:要求平均每天超過(guò)計(jì)劃多少件,必須知道:計(jì)劃每天生產(chǎn)多少件和實(shí)際每天生產(chǎn)多少件。計(jì)劃每天生產(chǎn)多少件已知,實(shí)際每天生產(chǎn)多少件,題中沒(méi)有告訴,還得求出來(lái)。要求實(shí)際每天生產(chǎn)多少件玩具,必須知道:實(shí)際生產(chǎn)多少天,和實(shí)際生產(chǎn)多少件,這兩個(gè)條件題中都已知。
5分類(lèi)法根據(jù)事物的共同點(diǎn)和差異點(diǎn)將事物區(qū)分為不同種類(lèi)的方法,叫做分類(lèi)法。分類(lèi)是以比較為基礎(chǔ)的。依據(jù)事物之間的共同點(diǎn)將它們合為較大的類(lèi),又依據(jù)差異點(diǎn)將較大的類(lèi)再分為較小的類(lèi)。
分類(lèi)即要注意大類(lèi)與小類(lèi)之間的不同層次,又要做到大類(lèi)之中的各小類(lèi)不重復(fù)、不遺漏、不交叉。
例7:自然數(shù)按約數(shù)的個(gè)數(shù)來(lái)分,可分成幾類(lèi)?
答:可分為三類(lèi)。(1)只有一個(gè)約數(shù)的數(shù),它是一個(gè)單位數(shù),只有一個(gè)數(shù)1;(2)有兩個(gè)約數(shù)的,也叫質(zhì)數(shù),有無(wú)數(shù)個(gè);(3)有三個(gè)約數(shù)的,也叫合數(shù),也有無(wú)數(shù)個(gè)。
6綜合法把對(duì)象的各個(gè)部分或各個(gè)方面或各個(gè)要素聯(lián)結(jié)起來(lái),并組合成一個(gè)有機(jī)的整體來(lái)研究、推導(dǎo)和一種思維方法叫做綜合法。
用綜合法解數(shù)學(xué)題時(shí),通常把各個(gè)題知看作是部分(或要素),經(jīng)過(guò)對(duì)各部分(或要素)相互之間內(nèi)在聯(lián)系一層層分析,逐步推導(dǎo)到題目要求,所以,綜合法的解題模式是執(zhí)因?qū)Ч?,也叫順推法。這種方法適用于已知條件較少,數(shù)量關(guān)系比較簡(jiǎn)單的數(shù)學(xué)題。
例8:兩個(gè)質(zhì)數(shù),它們的差是小于30的合數(shù),它們的和即是11的倍數(shù)又是小于50的偶數(shù)。寫(xiě)出適合上面條件的各組數(shù)。
思路:11的倍數(shù)同時(shí)小于50的偶數(shù)有22和44。
兩個(gè)數(shù)都是質(zhì)數(shù),而和是偶數(shù),顯然這兩個(gè)質(zhì)數(shù)中沒(méi)有2。
和是22的兩個(gè)質(zhì)數(shù)有:3和19,5和17。它們的差都是小于30的合數(shù)嗎?
和是44的兩個(gè)質(zhì)數(shù)有:3和41,7和37,13和31。它們的差是小于30的合數(shù)嗎?
這就是綜合法的思路。
小學(xué)數(shù)學(xué)復(fù)習(xí)方法
一、制定切實(shí)可行的復(fù)習(xí)計(jì)劃,并認(rèn)真執(zhí)行計(jì)劃。為使復(fù)習(xí)具有針對(duì)性,目的性和可行性,找準(zhǔn)重點(diǎn)、難點(diǎn),大綱(課程標(biāo)準(zhǔn))是復(fù)習(xí)依據(jù),教材是復(fù)習(xí)的藍(lán)本。復(fù)習(xí)時(shí)要弄清學(xué)習(xí)中的難點(diǎn)、疑點(diǎn)及各知識(shí)點(diǎn)易出錯(cuò)的原因,這樣做到復(fù)習(xí)有針對(duì)性,可收到事半功倍的效果。
二、分類(lèi)整理、梳理,強(qiáng)化復(fù)習(xí)的系統(tǒng)性。復(fù)習(xí)的重要特點(diǎn)就是在系統(tǒng)原理的指導(dǎo)下,對(duì)所學(xué)知識(shí)進(jìn)行系統(tǒng)的整理,使之形成一個(gè)較完整的知識(shí)體體系,這樣有利于知識(shí)的系統(tǒng)化和對(duì)其內(nèi)在聯(lián)系的把握,便于融合貫通。做到梳理——訓(xùn)練——拓展,有序發(fā)展,真正提高復(fù)習(xí)的效果。
三、辨析比較,區(qū)分弄清易混概念。對(duì)于易混淆的概念,首先抓住意義方面的比較,再者是對(duì)易混概念的分析,這樣能全面把握概念的本質(zhì),避免不同概念的干擾,另外對(duì)易混的方法也應(yīng)進(jìn)行比較,以明確解題方法。
四、一題多解,多題一解,提高解題的靈活性。有些題目,可以從不同的角度去分析,得到不同的解題方法。一題多解可以培養(yǎng)分析問(wèn)題的能力。靈活解題的能力。不同的解題思路,列式不同,結(jié)果相同,收到殊途同歸的效果。同時(shí)也給其他同學(xué)以啟迪,開(kāi)闊解題思路。有些應(yīng)用題,雖題目形式不同,但它們的解題方法是一樣的,故在復(fù)習(xí)時(shí),要從不同的角度去思考,要對(duì)各類(lèi)習(xí)題進(jìn)行歸類(lèi),這樣才能使所所學(xué)知識(shí)融會(huì)貫通,提高解題靈活性。
五、有的放矢,挖掘創(chuàng)新。機(jī)械的重復(fù),什么都講,什么都練是復(fù)習(xí)大忌,復(fù)習(xí)一定要有目的,有重點(diǎn),要對(duì)所學(xué)知識(shí)歸納,概括。習(xí)題要具有開(kāi)放性,創(chuàng)新性,使思維得到充分發(fā)展,要正確評(píng)估自己,自覺(jué)補(bǔ)缺查漏,面對(duì)復(fù)雜多變的題目,嚴(yán)密審題,弄清知識(shí)結(jié)構(gòu)關(guān)系和知識(shí)規(guī)律,發(fā)掘隱含條件,多思多找,得出自己的經(jīng)驗(yàn)。